Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
China Journal of Chinese Materia Medica ; (24): 163-168, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008452

RESUMEN

This study aimed to explore the main active ingredients and potential targets of Solanum nigrum(SN), so as to reveal the potential molecular mechanism of SN in the treatment of hepatocellular carcinoma(HCC) based on network pharmacology and molecular docking. First,the main active ingredients and predictive targets of SN were collected in the traditional Chinese medicine systems pharmacology database and analysis platform(TCMSP). Then,the targets relating to HCC were collected through retrieval of integrated bio-pharmacological network database for traditional Korean medicine(PharmDB-K), oncogenomic database of hepatocellular carcinoma(OncoDB.hcc). The common targets of disease-drug component were selected through intersection between predictive targets and disease targets. Next, based on the String platform, protein-protein interaction network(PPI) model of the potential anti-HCC targets was constructed using the software Cytoscape 3.7.1. ClueGO and CluePedia APP in Cytoscape were used to analyze the gene function of SN in the treatment of HCC, and construct the main active ingredients-potential targets-signal pathways topology network of SN. Finally,DISCOVERY STUDIO software was applied in verifying the molecular docking between the key active ingredient and potential protein target. The results showed that there were 4 main active ingredients of SN, involving 22 potential targets relating to HCC and 7 signal pathways relating to potential anti-HCC targets of SN. Network analysis showed that SN may play a therapeutic role in HCC by acting on key targets, such as EGFR, TP53, MYC, CCND1 and CTNNB1. Molecular docking results showed that quercetin and EGFR could bind stably and interact through amino acid residues LEU718, LYS745 and GLN791. This study revealed the potential active ingredients and the possible molecular mechanism of SN for treatment of HCC, providing scientific basis for follow-up exploration of the molecular mechanism of SN against HCC.


Asunto(s)
Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Solanum nigrum/química
2.
Acta Physiologica Sinica ; (6): 34-40, 2006.
Artículo en Chino | WPRIM | ID: wpr-265490

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA) is a substituted amphetamine with stimulating and hallucinogenic properties. Since MDMA induces "ecstasy" it is extensively used as a "recreational" drug. It has been well established that MDMA is neurotoxic and can result in long-term degeneration of cerebral 5-hydroxytryptamine (5-HT) nerve terminals in many species. The present study was undertaken to investigate the long-term neurotoxic effects of MDMA on cortical and hippocampal structures, by repeatedly administering MDMA in short time. Male Wistar rats were randomly assigned to control group and MDMA-treated group. MDMA (10 mg/kg) was administered to rats of MDMA-treated group, once per hour, total 40 mg/kg; rats of control group were treated with the same volume of saline. Thirty-two weeks after administering MDMA, the expression of serotonin transporter (SERT) mRNA and diazepam binding inhibitor (DBI) mRNA was detected by in situ hybridization. The expression of glial fibrillary acidic protein (GFAP) was detected by immunohistochemistry, and the degeneration of nerve terminals was demonstrated by Bielschowsky and Glee Marsland silver staining. The results showed that the expression of SERT mRNA in hippocampus decreased by 31.96%, while expression of DBI mRNA in neocortex increased by 40.51%, compared with the control group (P<0.05). The expression of GFAP in the brain tissue increased (P<0.05), while significant reduction of the nerve terminals in neocortex was demonstrated by silver staining, compared with the control group. These results suggest that the neurotoxicity of MDMA results in sustained cortical and hippocampal structural changes, which in turn result in disorder of the brain functions.


Asunto(s)
Animales , Masculino , Ratas , Corteza Cerebral , Patología , Inhibidor de la Unión a Diazepam , Genética , Metabolismo , Hipocampo , Patología , N-Metil-3,4-metilenodioxianfetamina , Toxicidad , Síndromes de Neurotoxicidad , Patología , ARN Mensajero , Genética , Metabolismo , Ratas Wistar , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Genética , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA