Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Tipo de estudio
Intervalo de año
1.
Artículo en Chino | WPRIM | ID: wpr-1039008

RESUMEN

Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.

2.
Acta Pharmaceutica Sinica ; (12): 1116-1122, 2010.
Artículo en Chino | WPRIM | ID: wpr-353413

RESUMEN

The biotransformation, CYP reaction phenotyping, the impact of CYP inhibitors and enzyme kinetics of 3-cyanomethyl-4-methyl-DCK (CMDCK), a new anti-HIV preclinical candidate belonging to DCK analogs, were investigated in human intestinal microsomes and recombinant cytochrome P450 (CYP) enzymes. CMDCK (4 micromol L(-1)) was incubated with a panel of rCYP enzymes (CYP1A2, 2C9, 2C19, 2D6 and 3A4) in vitro. The remaining parent drug in incubates was quantitatively analyzed by a LC-MS method. CYP3A4 was identified as the principal CYP isoenzyme responsible for its metabolism in intestinal microsomes. The major metabolic pathway of CMDCK was oxidation and a number of oxidative metabolites were screened with LC-MS. The Km, Vmax, CLint and T1/2 of CMDCK obtained from human intestinal microsome were 45.6 micromol L(-1), 0.33 micromol L(-1) min(-1), 12.1 mL min(-1) kg(-1) and 25.7 min, respectively. Intestinal clearance of CMDCK was estimated from in vitro data to be 3.3 mL min(-1) kg(-1), and was almost equal to the intestinal blood flow rate (4.6 mL min(-1) kg(-1)). The selective CYP3A4 inhibitors, ketoconazole, troleandomycin and ritonavir demonstrated significant inhibitory effects on CMDCK intestinal metabolism, which suggested that co-administration of CMDCK with potent CYP3A inhibitors, such as ritonavir, might decrease its intestinal metabolic clearance and subsequently improve its bioavailability in body.


Asunto(s)
Humanos , Fármacos Anti-VIH , Metabolismo , Farmacocinética , Disponibilidad Biológica , Compuestos Bicíclicos Heterocíclicos con Puentes , Metabolismo , Farmacocinética , Cumarinas , Metabolismo , Farmacocinética , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A , Intestinos , Metabolismo , Cetoconazol , Farmacología , Tasa de Depuración Metabólica , Microsomas , Metabolismo , Ritonavir , Farmacología , Troleandomicina , Farmacología
3.
Artículo en Chino | WPRIM | ID: wpr-680131

RESUMEN

As one of the risk factors for atherosclerosis,human cytomegalovirus infection has received increasing attention,while cytomegalovirus infection of vascular endothelial cells is considered as the initial stage of causing atherosclerosis.Therefore,elucidating the mechanism of human cytomegalovirus infection of vascular endothelial cells will help further confirm the viral and etiological theories of atherosclerosis,and may block its occurrence and development from the initial stage of infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA