Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Medical Journal ; (24): 2302-2309, 2018.
Artículo en Inglés | WPRIM | ID: wpr-690221

RESUMEN

<p><b>Background</b>Myocardial ischemia injury is one of the leading causes of death and disability worldwide. Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions. Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction. However, the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood. The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI.</p><p><b>Methods</b>Fifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0, 0.5, 1.0, 3.0, and 7.0 days postoperation. Model for MI was constructed in ATF3TGfl/flCol1a2-Cre+ (CF-specific ATF3 overexpression group, n = 5) and ATF3TGfl/flCol1a2-Cre- male mice (without CF-specific ATF3 overexpression group, n = 5). In addition, five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- were subjected to sham MI operation. Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28 day after MI surgery in ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- mice received sham or MI operation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue. BrdU staining was used to detect fibroblast proliferation.</p><p><b>Results</b>After establishment of an MI model, we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs. Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs. 30.5%, t = 8.610, P = 0.001) and increased fractional shortening (26.8% vs. 18.1%, t = 7.173, P = 0.002), which was accompanied by a decrease in cardiac scar area (23.1% vs. 11.0%, t = 8.610, P = 0.001). qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs, displaying pro-proliferation properties. BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin II stimuli (11.5% vs. 6.8%, t = 31.599, P = 0.001) or serum stimuli (31.6% vs. 20.1%, t = 31.599, P = 0.001). The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2: 91.6% vs. 71.8%, t = 8.465, P = 0.015) and 48 h (P3: 81.6% vs. 51.1%, t = 9.029, P = 0.012) after serum stimulation. Notably, ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury.</p><p><b>Conclusions</b>We identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.</p>


Asunto(s)
Animales , Masculino , Ratones , Factor de Transcripción Activador 3 , Fisiología , Modelos Animales de Enfermedad , Fibroblastos , Fisiología , Fibrosis , Ratones Endogámicos C57BL , Infarto del Miocardio , Miocardio , Remodelación Ventricular
2.
Journal of Breast Cancer ; : 251-258, 2018.
Artículo en Inglés | WPRIM | ID: wpr-716697

RESUMEN

PURPOSE: Multidrug resistance (MDR) remains a major obstacle in the treatment of triple-negative breast cancer (TNBC) with conventional chemotherapeutic agents. A previous study demonstrated that hsa-miRNA-143-3p plays a vital role in drug resistance of TNBC. Downregulation of hsa-miRNA-143-3p upregulated the expression of its target protein cytokine-induced apoptosis inhibitor 1 (CIAPIN1) in order to activate MDR, while upregulation of hsa-miRNA-143-3p effectively enhances the sensitivity of drug-resistant TNBC cells to chemotherapeutics. The present study aimed to further verify these findings in vivo. METHODS: We established a hypodermic tumor nude mice model using paclitaxel-resistant TNBC cells. We expressed ectopic hsa-miRNA-143-3p under the control of a breast cancer-specific human mammaglobin promoter that guided the efficient expression of exogenous hsa-miRNA-143-3p only in breast cancer cells. Thereafter, we overexpressed hsa-miRNA-143-3p in xenografts using a recombinant virus system and quantified the expression of hsa-miRNA-143-3p, CIAPIN1 protein, and proteins encoded by related functional genes by western blot. RESULTS: We successfully completed the prospective exploration of the intravenous virus injection pattern from extensive expression to targeted expression. The overexpression of hsa-miRNA-143-3p significantly alleviated chemoresistance of TNBC by inhibiting viability. In addition, we observed that the expression of CIAPIN1 as a hsa-miRNA-143-3p target protein was remarkably decreased. CONCLUSION: We partly illustrated the mechanism underlying the hsa-miRNA-143-3p/CIAPIN1 drug resistance pathway. HsamiRNA-143-3p as a tumor suppressive microRNA may be a novel target to effectively reverse MDR of TNBC in vivo.


Asunto(s)
Animales , Humanos , Ratones , Apoptosis , Western Blotting , Mama , Neoplasias de la Mama , Regulación hacia Abajo , Resistencia a Medicamentos , Resistencia a Múltiples Medicamentos , Xenoinjertos , Ratones Desnudos , MicroARNs , Estudios Prospectivos , Neoplasias de la Mama Triple Negativas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA