Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Neuroscience Bulletin ; (6): 947-961, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982445

RESUMEN

Effective treatments for neuropathic pain are lacking due to our limited understanding of the mechanisms. The circRNAs are mainly enriched in the central nervous system. However, their function in various physiological and pathological conditions have yet to be determined. Here, we identified circFhit, an exon-intron circRNA expressed in GABAergic neurons, which reduced the inhibitory synaptic transmission in the spinal dorsal horn to mediate spared nerve injury-induced neuropathic pain. Moreover, we found that circFhit decreased the expression of GAD65 and induced hyperexcitation in NK1R+ neurons by promoting the expression of its parental gene Fhit in cis. Mechanistically, circFhit was directly bound to the intronic region of Fhit, and formed a circFhit/HNRNPK complex to promote Pol II phosphorylation and H2B monoubiquitination by recruiting CDK9 and RNF40 to the Fhit intron. In summary, we revealed that the exon-intron circFhit contributes to GABAergic neuron-mediated NK1R+ neuronal hyperexcitation and neuropathic pain via regulating Fhit in cis.


Asunto(s)
Ratas , Animales , Células del Asta Posterior/patología , Asta Dorsal de la Médula Espinal/metabolismo , Neuralgia , Transmisión Sináptica
2.
Acta Physiologica Sinica ; (6): 83-88, 2004.
Artículo en Chino | WPRIM | ID: wpr-290884

RESUMEN

Our previous studies have shown that long-term potentiation (LTP) of C-fiber-evoked field potentials in the spinal dorsal horn is NMDA receptor dependent. It is known that elevation of Ca(2+) in the postsynaptic neurons through NMDA receptor channels during high-frequency stimulation of the afferent fibers is crucial for LTP induction, but how this leads to a prolonged potentiation of synaptic transmission in the spinal dorsal horn is not clear. In the hippocampus, a rise of Ca(2+) activates calcium/calmodulin-dependent protein kinase II (CaMK II) through autophosphorylation. Once this occurs, the kinase remains active, even when Ca(2+) concentration returns to baseline level. Phosphorylated CaMK II potentiates synaptic transmission by enhancement of AMPA receptor channel function via phosphorylation of GluR1 subunit of the receptor and the addition of AMPA receptors to synapses. Up to now, the role of CaMK II in the induction and maintenance of LTP of the C-fiber-evoked field potentials in spinal dorsal horn has not been evaluated. In the present study, we examined the expression of CaMK II and phospho-CaMK II in the lumbar segments (L4-L6) of the rat spinal dorsal horn at 30 min and 3 h after the establishment of LTP induced by tetanic electrical stimulation of the sciatic nerve (40 V, 0.5 ms pulses at 100 Hz for 1 s repeated four times at 10 s intervals) by using Western blot and electrophysiological techniques. To determine the role of the phospho-CaMK II in the induction and maintenance of the spinal LTP, a selective CaMK II inhibitor KN-93 (100 micromol/L) was applied directly onto the spinal cord at the recording segments before and after LTP induction. We found that (1) the protein level of phospho-CaMKII increased at both 30 min and 3 h after LTP induction, while the total protein level of CaMK II increased at 3 h but not at 30 min after LTP induction. (2) Spinal application of KN-93 at 30 min prior to the tetanus blocked both LTP induction and the increase in phospho-CaMK II. (3) 30 min after LTP induction, spinal application of KN-93 depressed LTP and the level of phospho-CaMK II (n=3). (4) Spinal application of KN-93 at 3 h after LTP, however, affected neither the amplitude of the spinal LTP nor the level of phospho-CaMK II in the spinal dorsal horn. These results suggest that activation of CaMK II is probably crucial for the induction and the early-phase maintenance of LTP of C-fiber-evoked field potentials in the spinal dorsal horn.


Asunto(s)
Animales , Masculino , Ratas , Potenciales Evocados , Potenciación a Largo Plazo , Fisiología , Fibras Nerviosas Amielínicas , Fisiología , Vías Nerviosas , Fisiología , Fosfoproteínas Fosfatasas , Metabolismo , Fosforilación , Células del Asta Posterior , Fisiología , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Médula Espinal , Fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA