Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Zhejiang University. Science. B ; (12): 1014-1026, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010579

RESUMEN

Aeriscardovia aeriphila, also known as Bifidobacterium aerophilum, was first isolated from the caecal contents of pigs and the faeces of cotton-top tamarin. Bifidobacterium species play important roles in preventing intestinal infections, decreasing cholesterol levels, and stimulating the immune system. In this study, we isolated a strain of bacteria from the duodenal contents of broiler chickens, which was identified as A. aeriphila, and then evaluated the effects of A. aeriphila on growth performance, antioxidant functions, immune functions, and gut microbiota in commercial broiler chickens. Chickens were orally gavaged with A. aeriphila (1×109 CFU/mL) for 21 d. The results showed that A. aeriphila treatment significantly increased the average daily gain and reduced the feed conversion ratio (P<0.001). The levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) were significantly increased following A. aeriphila treatment (P<0.05). Blood urea nitrogen and aspartate aminotransferase levels were decreased, whereas glucose and creatinine levels increased as a result of A. aeriphila treatment. Furthermore, the levels of serum antioxidant enzymes, including catalase (P<0.01), superoxide dismutase (P<0.001), and glutathione peroxidase (P<0.05), and total antioxidant capacity (P<0.05) were enhanced following A. aeriphila treatment. A. aeriphila treatment significantly increased the levels of serum immunoglobulin A (IgA) (P<0.05), IgG (P<0.01), IgM (P<0.05), interleukin-1 (IL-1) (P<0.05), IL-4 (P<0.05), and IL-10 (P<0.05). The broiler chickens in the A. aeriphila group had higher secretory IgA (SIgA) levels in the duodenum (P<0.01), jejunum (P<0.001), and cecum (P<0.001) than those in the control group. The messenger RNA (mRNA) relative expression levels of IL-10 (P<0.05) and IL-4 (P<0.001) in the intestinal mucosa of chickens were increased, while nuclear factor-‍κB (NF‍-‍κB) (P<0.001) expression was decreased in the A. aeriphila group compared to the control group. Phylum-level analysis revealed Firmicutes as the main phylum, followed by Bacteroidetes, in both groups. The data also found that Phascolarctobacterium and Barnesiella were increased in A. aeriphila-treated group. In conclusion, oral administration of A. aeriphila could improve the growth performance, serum antioxidant capacity, immune modulation, and gut health of broilers. Our findings may provide important information for the application of A. aeriphila in poultry production.


Asunto(s)
Animales , Porcinos , Antioxidantes/farmacología , Pollos , Microbioma Gastrointestinal , Interleucina-10/farmacología , Interleucina-4/farmacología , FN-kappa B/metabolismo , Inmunidad , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
2.
Journal of Zhejiang University. Science. B ; (12): 734-748, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010566

RESUMEN

A growing body of evidence has linked the gut microbiota to liver metabolism. The manipulation of intestinal microflora has been considered as a promising avenue to promote liver health. However, the effects of Lactobacillus gasseri LA39, a potential probiotic, on liver metabolism remain unclear. Accumulating studies have investigated the proteomic profile for mining the host biological events affected by microbes, and used the germ-free (GF) mouse model to evaluate host-microbe interaction. Here, we explored the effects of L. gasseri LA39 gavage on the protein expression profiles of the liver of GF mice. Our results showed that a total of 128 proteins were upregulated, whereas a total of 123 proteins were downregulated by treatment with L. gasseri LA39. Further bioinformatics analyses suggested that the primary bile acid (BA) biosynthesis pathway in the liver was activated by L. gasseri LA39. Three differentially expressed proteins (cytochrome P450 family 27 subfamily A member 1 (CYP27A1), cytochrome P450 family 7 subfamily B member 1 (CYP7B1), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1)) involved in the primary BA biosynthesis pathway were further validated by western blot assay. In addition, targeted metabolomic analyses demonstrated that serum and fecal β‍-muricholic acid (a primary BA), dehydrolithocholic acid (a secondary BA), and glycolithocholic acid-3-sulfate (a secondary BA) were significantly increased by L. gasseri LA39. Thus, our data revealed that L. gasseri LA39 activates the hepatic primary BA biosynthesis and promotes the intestinal secondary BA biotransformation. Based on these findings, we suggest that L. gasseri LA39 confers an important function in the gut‒liver axis through regulating BA metabolism.


Asunto(s)
Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Lactobacillus gasseri , Proteómica , Hígado/metabolismo , Biotransformación
3.
Journal of Zhejiang University. Science. B ; (12): 430-441, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982383

RESUMEN

Early weaned piglets suffer from oxidative stress and enteral infection, which usually results in gut microbial dysbiosis, serve diarrhea, and even death. Rice bran oil (RBO), a polyphenol-enriched by-product of rice processing, has been shown to have antioxidant and anti-inflammatory properties both in vivo and in vitro. Here, we ascertained the proper RBO supplementation level, and subsequently determined its effects on lipopolysaccharide (LPS)-induced intestinal dysfunction in weaned piglets. A total of 168 piglets were randomly allocated into four groups of seven replicates (42 piglets each group, (21±1) d of age, body weight (7.60±0.04) kg, and half males and half females) and were given basal diet (Ctrl) or basal diet supplemented with 0.01% (mass fraction) RBO (RBO1), 0.02% RBO (RBO2), or 0.03% RBO (RBO3) for 21 d. Then, seven piglets from the Ctrl and the RBO were treated with LPS (100 μg/kg body weight (BW)) as LPS group and RBO+LPS group, respectively. Meanwhile, seven piglets from the Ctrl were treated with the saline vehicle (Ctrl group). Four hours later, all treated piglets were sacrificed for taking samples of plasma, jejunum tissues, and feces. The results showed that 0.02% was the optimal dose of dietary RBO supplementation based on diarrhea, average daily gain, and average daily feed intake indices in early weaning piglets. Furthermore, RBO protected piglets against LPS-induced jejunal epithelium damage, which was indicated by the increases in villus height, villus height/crypt depth ratio, and Claudin-1 levels, as well as a decreased level of jejunal epithelium apoptosis. RBO also improved the antioxidant ability of LPS-challenged piglets, which was indicated by the elevated concentrations of catalase and superoxide dismutase, and increased total antioxidant capacity, as well as the decreased concentrations of diamine oxidase and malondialdehyde in plasma. Meanwhile, RBO improved the immune function of LPS-challenged weaned piglets, which was indicated by elevated immunoglobulin A (IgA), IgM, β‍‍-defensin-1, and lysozyme levels in the plasma. In addition, RBO supplementation improved the LPS challenge-induced dysbiosis of gut microbiota. Particularly, the indices of antioxidant capacity, intestinal damage, and immunity were significantly associated with the RBO-regulated gut microbiota. These findings suggested that 0.02% RBO is a suitable dose to protect against LPS-induced intestinal damage, oxidative stress, and jejunal microbiota dysbiosis in early weaned piglets.


Asunto(s)
Masculino , Femenino , Animales , Porcinos , Lipopolisacáridos/toxicidad , Antioxidantes/farmacología , Aceite de Salvado de Arroz , Disbiosis , Suplementos Dietéticos , Diarrea/veterinaria , Destete , Peso Corporal
4.
Protein & Cell ; (12): 907-915, 2010.
Artículo en Inglés | WPRIM | ID: wpr-757687

RESUMEN

Autophagy is an intracellular degradation system that delivers cytoplasmic contents to the lysosome for degradation. It is a "self-eating" process and plays a "house-cleaner" role in cells. The complex process consists of several sequential steps-induction, autophagosome formation, fusion of lysosome and autophagosome, degradation, efflux transportation of degradation products, and autophagic lysosome reformation. In this review, the cellular and molecular regulations of late stage of autophagy, including cellular events after fusion step, are summarized.


Asunto(s)
Animales , Humanos , Autofagia , Fisiología , Lisosomas , Metabolismo , Fisiología
5.
Acta Nutrimenta Sinica ; (6)1956.
Artículo en Chino | WPRIM | ID: wpr-553441

RESUMEN

Objective: To investigate the action of low level soybean isoflavones (genistin, genistein and daidzein) on the oxidative modification of lipoproteins in serum. Methods: After a system of lipoprotein oxidation mediated by Cu 2+ was established in a dilute serum, the effects of soybean isoflavones on the course and the end of lipoprotein oxidation could be reflected by monitoring the production of conjugated dienes and thiobarbituric acid-reactive substances (TBARS) respectively when isoflavones were added. Results: After 0.5-10 ?mol/L genistein, daidzein, genistin or ?-tocopherol was added into the lipoprotein system respectively before the oxidation initiated by Cu 2+ , the production of conjugated dienes or TBARS in the system was significantly reduced with a dose-dependent relationship. When the lipoprotein oxidation was initiated by Cu 2+ at 37 ℃ for 1 h or 1.5 h, soybean isoflavones also revealed strong inhibition on the oxidation in a weakening way. In comparison with soy isoflavones, ?-tocopherol had smaller inhibition on the production of conjugated dienes, but had promotion on the increase of TBARS. Conclusion: Lipoprotein oxidative modification in serum was weakened by low level soybean isoflavones, and its action after the oxidation initiated was more effective than that of ?-tocopherol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA