Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros








Intervalo de año
1.
Protein & Cell ; (12): 339-351, 2020.
Artículo en Inglés | WPRIM | ID: wpr-828762

RESUMEN

Genome packaging is a fundamental process in a viral life cycle and a prime target of antiviral drugs. Herpesviruses use an ATP-driven packaging motor/terminase complex to translocate and cleave concatemeric dsDNA into procapsids but its molecular architecture and mechanism are unknown. We report atomic structures of a herpesvirus hexameric terminase complex in both the apo and ADP•BeF3-bound states. Each subunit of the hexameric ring comprises three components-the ATPase/terminase pUL15 and two regulator/fixer proteins, pUL28 and pUL33-unlike bacteriophage terminases. Distal to the nuclease domains, six ATPase domains form a central channel with conserved basic-patches conducive to DNA binding and trans-acting arginine fingers are essential to ATP hydrolysis and sequential DNA translocation. Rearrangement of the nuclease domains mediated by regulatory domains converts DNA translocation mode to cleavage mode. Our structures favor a sequential revolution model for DNA translocation and suggest mechanisms for concerted domain rearrangements leading to DNA cleavage.

2.
Protein & Cell ; (12): 339-351, 2020.
Artículo en Inglés | WPRIM | ID: wpr-828598

RESUMEN

Genome packaging is a fundamental process in a viral life cycle and a prime target of antiviral drugs. Herpesviruses use an ATP-driven packaging motor/terminase complex to translocate and cleave concatemeric dsDNA into procapsids but its molecular architecture and mechanism are unknown. We report atomic structures of a herpesvirus hexameric terminase complex in both the apo and ADP•BeF3-bound states. Each subunit of the hexameric ring comprises three components-the ATPase/terminase pUL15 and two regulator/fixer proteins, pUL28 and pUL33-unlike bacteriophage terminases. Distal to the nuclease domains, six ATPase domains form a central channel with conserved basic-patches conducive to DNA binding and trans-acting arginine fingers are essential to ATP hydrolysis and sequential DNA translocation. Rearrangement of the nuclease domains mediated by regulatory domains converts DNA translocation mode to cleavage mode. Our structures favor a sequential revolution model for DNA translocation and suggest mechanisms for concerted domain rearrangements leading to DNA cleavage.

3.
Chinese Journal of Biotechnology ; (12): 389-395, 2019.
Artículo en Chino | WPRIM | ID: wpr-771368

RESUMEN

Most organisms contain glutamate dehydrogenase (E.C. 1.4.1.2-1.4.1.4). In eukaryotes, the enzyme is mainly present in mitochondria. This enzyme plays a vital role in the metabolism of nitrogen and carbon and the signaling pathway. Studies have found that glutamate dehydrogenase has a certain relationship with the occurrence and development of tumors, which is significant for tumor research, but reviews on its relationship with human tumors are rare. This review summarized the relationship between glutamate dehydrogenase and breast cancer, glioma, colorectal cancer and ovarian cancer, etc, thus providing assistance for related research.


Asunto(s)
Humanos , Carbono , Glioma , Glutamato Deshidrogenasa , Mitocondrias , Nitrógeno
4.
Protein & Cell ; (12): 590-600, 2017.
Artículo en Inglés | WPRIM | ID: wpr-756983

RESUMEN

Entero virus 71 (EV71) causes hand, foot, and mouth disease (HFMD) and occasionally leads to severe neurological complications and even death. Scavenger receptor class B member 2 (SCARB2) is a functional receptor for EV71, that mediates viral attachment, internalization, and uncoating. However, the exact binding site of EV71 on SCARB2 is unknown. In this study, we generated a monoclonal antibody (mAb) that binds to human but not mouse SCARB2. It is named JL2, and it can effectively inhibit EV71 infection of target cells. Using a set of chimeras of human and mouse SCARB2, we identified that the region containing residues 77-113 of human SCARB2 contributes significantly to JL2 binding. The structure of the SCARB2-JL2 complex revealed that JL2 binds to the apical region of SCARB2 involving α-helices 2, 5, and 14. Our results provide new insights into the potential binding sites for EV71 on SCARB2 and the molecular mechanism of EV71 entry.


Asunto(s)
Animales , Humanos , Ratones , Secuencia de Aminoácidos , Anticuerpos Monoclonales , Química , Genética , Metabolismo , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Enterovirus Humano A , Genética , Alergia e Inmunología , Fibroblastos , Virología , Expresión Génica , Células HEK293 , Fragmentos Fab de Inmunoglobulinas , Química , Genética , Metabolismo , Proteínas de Membrana de los Lisosomas , Química , Genética , Alergia e Inmunología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Receptores Depuradores , Química , Genética , Alergia e Inmunología , Receptores Virales , Química , Genética , Alergia e Inmunología , Proteínas Recombinantes de Fusión , Química , Genética , Alergia e Inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Células Sf9 , Spodoptera , Termodinámica
5.
Protein & Cell ; (12): 814-824, 2015.
Artículo en Inglés | WPRIM | ID: wpr-757174

RESUMEN

Ebolavirus can cause hemorrhagic fever in humans with a mortality rate of 50%-90%. Currently, no approved vaccines and antiviral therapies are available. Human TIM1 is considered as an attachment factor for EBOV, enhancing viral infection through interaction with PS located on the viral envelope. However, reasons underlying the preferable usage of hTIM-1, but not other PS binding receptors by filovirus, remain unknown. We firstly demonstrated a direct interaction between hTIM-1 and EBOV GP in vitro and determined the crystal structures of the Ig V domains of hTIM-1 and hTIM-4. The binding region in hTIM-1 to EBOV GP was mapped by chimeras and mutation assays, which were designed based on structural analysis. Pseudovirion infection assays performed using hTIM-1 and its homologs as well as point mutants verified the location of the GP binding site and the importance of EBOV GP-hTIM-1 interaction in EBOV cellular entry.


Asunto(s)
Humanos , Ebolavirus , Metabolismo , Citometría de Flujo , Glicoproteínas , Metabolismo , Receptor Celular 1 del Virus de la Hepatitis A , Receptor 2 Celular del Virus de la Hepatitis A , Glicoproteínas de Membrana , Metabolismo , Proteínas de la Membrana , Metabolismo , Unión Proteica , Receptores Virales , Metabolismo , Resonancia por Plasmón de Superficie , Proteínas del Envoltorio Viral , Metabolismo , Proteínas Virales , Metabolismo
6.
Protein & Cell ; (12): 692-703, 2014.
Artículo en Inglés | WPRIM | ID: wpr-757655

RESUMEN

Unlike the well-established picture for the entry of enveloped viruses, the mechanism of cellular entry of non-enveloped eukaryotic viruses remains largely mysterious. Picornaviruses are representative models for such viruses, and initiate this entry process by their functional receptors. Here we present the structural and functional studies of SCARB2, a functional receptor of the important human enterovirus 71 (EV71). SCARB2 is responsible for attachment as well as uncoating of EV71. Differences in the structures of SCARB2 under neutral and acidic conditions reveal that SCARB2 undergoes a pivotal pH-dependent conformational change which opens a lipid-transfer tunnel to mediate the expulsion of a hydrophobic pocket factor from the virion, a pre-requisite for uncoating. We have also identified the key residues essential for attachment to SCARB2, identifying the canyon region of EV71 as mediating the receptor interaction. Together these results provide a clear understanding of cellular attachment and initiation of uncoating for enteroviruses.


Asunto(s)
Animales , Humanos , Ácidos , Química , Secuencia de Aminoácidos , Proteínas de la Cápside , Química , Genética , Metabolismo , Enterovirus Humano A , Genética , Metabolismo , Fisiología , Células HEK293 , Interacciones Huésped-Patógeno , Concentración de Iones de Hidrógeno , Proteínas de Membrana de los Lisosomas , Química , Genética , Metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , ARN Viral , Genética , Metabolismo , Receptores Depuradores , Química , Genética , Metabolismo , Homología de Secuencia de Aminoácido , Células Sf9 , Electricidad Estática , Virión , Genética , Metabolismo , Acoplamiento Viral
7.
Protein & Cell ; (12): 628-640, 2013.
Artículo en Inglés | WPRIM | ID: wpr-757777

RESUMEN

Disulfide bond-forming (Dsb) protein is a bacterial periplasmic protein that is essential for the correct folding and disulfide bond formation of secreted or cell wallassociated proteins. DsbA introduces disulfide bonds into folding proteins, and is re-oxidized through interaction with its redox partner DsbB. Mycobacterium tuberculosis, a Gram-positive bacterium, expresses a DsbA-like protein ( Rv2969c), an extracellular protein that has its Nterminus anchored in the cell membrane. Since Rv2969c is an essential gene, crucial for disulfide bond formation, research of DsbA may provide a target of a new class of anti-bacterial drugs for treatment of M.tuberculosis infection. In the present work, the crystal structures of the extracellular region of Rv2969c (Mtb DsbA) were determined in both its reduced and oxidized states. The overall structure of Mtb DsbA can be divided into two domains: a classical thioredoxin-like domain with a typical CXXC active site, and an α-helical domain. It largely resembles its Escherichia coli homologue EcDsbA, however, it possesses a truncated binding groove; in addition, its active site is surrounded by an acidic, rather than hydrophobic surface. In our oxidoreductase activity assay, Mtb DsbA exhibited a different substrate specificity when compared to EcDsbA. Moreover, structural analysis revealed a second disulfide bond in Mtb DsbA, which is rare in the previously reported DsbA structures, and is assumed to contribute to the overall stability of Mtb DsbA. To investigate the disulphide formation pathway in M.tuberculosis, we modeled Mtb Vitamin K epoxide reductase (Mtb VKOR), a binding partner of Mtb DsbA, to Mtb DsbA.


Asunto(s)
Secuencia de Aminoácidos , Proteínas Bacterianas , Química , Metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Disulfuros , Química , Escherichia coli , Metabolismo , Proteínas de Escherichia coli , Química , Metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mycobacterium tuberculosis , Metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas , Química , Metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática
8.
Protein & Cell ; (12): 782-792, 2013.
Artículo en Inglés | WPRIM | ID: wpr-757560

RESUMEN

Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported "closed" state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two "switcher" residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1', P2 and P4 are essential for substrate specificity, which was verified by our substrate binding model. In addition, we compared the in vitro cleavage efficiency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fluorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specificity. These new insights should facilitate the future rational design of efficient 2A protease inhibitors.


Asunto(s)
Humanos , Infecciones por Coxsackievirus , Virología , Cristalografía por Rayos X , Cisteína Endopeptidasas , Química , Genética , Transferencia Resonante de Energía de Fluorescencia , Enfermedad de Boca, Mano y Pie , Patología , Virología , Picornaviridae , Química , Genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Virales , Química , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA