Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Chino | WPRIM | ID: wpr-772558

RESUMEN

OBJECTIVE@#To classify Right Bundle Branch Block (RBBB),Left Bundle Branch Block (LBBB) and normal ECG signals automatically.@*METHODS@#The MIT-BIH database was used as experimental data sources.The training set and test set were extracted for training and testing network models.Based on convolutional neural network,this paper proposed the core algorithm:sparse connection residual network.Compared the sparse connected residual network with classic network models,then evaluated the recognition effect of the model.@*RESULTS@#The accuracy of the test set the MIT-BIH database was 95.2%,the result is better than classic network models.@*CONCLUSIONS@#The algorithm proposed in this paper can assist doctors in the diagnosis of heart block related disease and place a high value on clinical application.


Asunto(s)
Humanos , Algoritmos , Arritmias Cardíacas , Diagnóstico por Imagen , Bloqueo de Rama , Diagnóstico por Imagen , Electrocardiografía , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA