Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Pharmaceutica Sinica B ; (6): 50-75, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929281

RESUMEN

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.

2.
Chinese Journal of Biotechnology ; (12): 1108-1115, 2010.
Artículo en Chino | WPRIM | ID: wpr-292164

RESUMEN

To investigate the transgenic expressing efficacy of helper-dependent adenoviral vector (HDAd) in vitro, we constructed a HDAd encoding enhanced green fluorescent protein (EGFP), denominated as HDAd/EGFP, performed large scale preparation and purification, and then identified the purified HDAd/EGFP under fluorescent microscope and electron microscope. After the concentration of HDAd/EGFP was determined by spectrophotometer, the transgenic expression efficiency of HDAd/EGFP was compared with first generation adenoviral vector encoding EGFP (FGAd/EGFP) in vitro. Therefore, we infected A549 cells with 2000 virus particles (vp) per cell by HDAd/EGFP and FGAd/EGFP respectively and analyzed EGFP expressing level by flow cytometry. Consequently, the fluorescent expression rate and fluorescent intensity of EGFP were higher in early infected A549 cells by HDAd/EGFP than by FGAd/EGFP. HDAd, capable of expressing transgene instantly and efficiently in vitro, is a potential vaccine vector.


Asunto(s)
Humanos , Adenoviridae , Genética , Metabolismo , Línea Celular Tumoral , Vectores Genéticos , Genética , Proteínas Fluorescentes Verdes , Genética , Virus Helper , Genética , Metabolismo , Transgenes , Proteínas Virales de Fusión , Genética , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA