Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 156-163, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003420

RESUMEN

ObjectiveTo screen the differential markers by analyzing volatile components in Dalbergia odorifera and its counterfeits, in order to provide reference for authentication of D. odorifera. MethodThe volatile components in D. odorifera and its counterfeits were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the GC conditions were heated by procedure(the initial temperature of the column was 50 ℃, the retention time was 1 min, and then the temperature was raised to 300 ℃ at 10 ℃ for 10 min), the carrier gas was helium, and the flow rate was 1.0 mL·min-1, the split ratio was 10∶1, and the injection volume was 1 mL. The MS conditions used electron bombardment ionization(EI) with the scanning range of m/z 35-550. The compound species were identified by database matching, the relative content of each component was calculated by the peak area normalization method, and principal component analysis(PCA), orthogonal partial least squares-discrimination analysis(OPLS-DA) and cluster analysis were performed on the detection results by SIMCA 14.1 software, and the differential components of D. odorifera and its counterfeits were screened out according to the variable importance in the projection(VIP) value>2 and P<0.05. ResultA total of 26, 17, 8, 22, 24 and 7 volatile components were identified from D. odorifera, D. bariensis, D. latifolia, D. benthamii, D. pinnata and D. cochinchinensis, respectively. Among them, there were 11 unique volatile components of D. odorifera, 6 unique volatile components of D. bariensis, 3 unique volatile components of D. latifolia, 6 unique volatile components of D. benthamii, 8 unique volatile components of D. pinnata, 4 unique volatile components of D. cochinchinensis. The PCA results showed that, except for D. latifolia and D. cochinchinensis, which could not be clearly distinguished, D. odorifera and other counterfeits could be distributed in a certain area, respectively. The OPLS-DA results showed that D. odorifera and its five counterfeits were clustered into one group each, indicating significant differences in volatile components between D. odorifera and its counterfeits. Finally, a total of 31 differential markers of volatile components between D. odoriferae and its counterfeits were screened. ConclusionHS-GC-MS combined with SIMCA 14.1 software can systematically elucidate the volatile differential components between D. odorifera and its counterfeits, which is suitable for rapid identification of them.

2.
China Pharmacy ; (12): 2556-2560, 2023.
Artículo en Chino | WPRIM | ID: wpr-997019

RESUMEN

Osteoporosis, as a systemic bone disease with high incidence rate and high disability rate, has become a research hotspot in recent years. The daidzein in soybean isoflavones can bind with estrogen receptors, simulating the prevention and treatment of osteoporosis with estrogen-like effect. Its mechanism of action includes promoting osteoblast formation and differentiation by activating the Wnt signaling pathway, increasing bone density, and improving bone tissue health; inhibiting osteoclast differentiation and slowing down bone resorption by reducing receptor activator of nuclear factors κB ligand/ osteoprotegerin ratio, downregulating the expression of macrophage colony-stimulating factor (M-CSF); collaborating antioxidant and immune regulation to achieve the goal of preventing and treating osteoporosis. In addition, different doses of daidzein have different effects on bone density and osteoporosis, which may be related to factors such as study design, sample selection, and individual differences.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 150-156, 2023.
Artículo en Chino | WPRIM | ID: wpr-975167

RESUMEN

ObjectiveTo analyze the migrating components absorbed into blood of the aqueous extract of Euphorbia helioscopia, and to explore the pharmacodynamic material basis of the aqueous extract of E. helioscopia against chronic obstructive pulmonary disease(COPD). MethodUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was used to detecte the migrating components absorbed into blood of rats after intragastric administration of aqueous extract of E. helioscopia. An Agilent RRHD SB-C18 column(3 mm×100 mm, 1.8 μm) was used with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as the mobile phase for gradient elution(0-15 min, 5%-30%B; 15-20 min, 30%-50%B; 20-30 min, 50%-95%B; 30-35 min, 95%-5%B), and the detection wavelength of 190-800 nm, column temperature of 40 ℃, flow rate of 0.3 mL∙min-1 and injection volume of 4 μL. The electrospray ionization(ESI) was used in positive and negative ion modes, and the detection range was m/z 50-1 250. Network pharmacology was used to screen out the key components and the key targets of COPD through the interaction analysis. Metascape database was used to predict the molecular function, biological process, cellular composition and signal pathways mainly involved in the anti-COPD effect of E. helioscopia. Molecular docking technique was used to determine the affinity of key targets with key components. ResultA total of 29 migrating components absorbed into blood of rats were identified after intragastric administration of aqueous extract of E. helioscopia, 9 of which were prototype components and 20 were metabolites. Network pharmacological analysis showed that luteolin, quercetin, apigenin, naringenin and helioscopinolide C were the key components of E. helioscopia against COPD, and vascular endothelial growth factor A(VEGFA), albumin(ALB), protein kinase B1(Akt1), tumor necrosis factor(TNF) and interleukin-6(IL-6) were the key targets. Molecular docking results showed that one diterpene lactone(helioscopinolide C) and three flavonoids(naringenin, luteolin, apigenin) in the migrating components absorbed into blood all had strong binding activity to the key targets of E. helioscopia against COPD. ConclusionNaringenin, helioscopinolide C, luteolin and apigenin may be the main anti-COPD active substances of E. helioscopia.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 173-179, 2023.
Artículo en Chino | WPRIM | ID: wpr-973759

RESUMEN

ObjectiveTo establish the identification method of Dalbergiae Odoriferae Lignum(DOL) and its counterfeits by nuclear magnetic resonance hydrogen spectrum(1H-NMR) combined with multivariate statistical analysis. Method1H-NMR spectra of DOL and its counterfeits were obtained by NMR, and the full composition information was established and transformed into a data matrix, and the detection conditions were as follows:taking dimethyl sulfoxide-d6(DMSO-d6) containing 0.03% tetramethylsilane(TMS) as the solvent, the constant temperature at 298 K(1 K=-272.15 ℃), pulse interval of 1.00 s, spectrum width of 12 019.23 Hz, the scanning number of 16 times, and the sampling time of 1.08 s. Similarity examination and hierarchical cluster analysis(HCA) were performed on the data matrix of DOL and its counterfeits, and orthogonal partial least squares-discriminant analysis(OPLS-DA) was used to analyze the data matrix and identify the differential components between them. In the established OPLS-DA category variable value model, the category variable value of DOL was set as 1, and the category variable value of the counterfeits was set as 0, and the threshold was set as ±0.3, in order to identify the commercially available DOL. The OPLS-DA score plot was used to determine the types of counterfeits in commercially available DOL, and it was verified by thin layer chromatography(TLC). ResultThe results of similarity analysis and HCA showed that there was a significant difference between DOL and its counterfeits. OPLS-DA found that the differential component between DOL and its counterfeits was trans-nerolidol. The established category variable value model could successfully identify the authenticity of the commercially available DOL. The results of the OPLS-DA score plot showed that there were heartwood of Dalbergia pinnata and D. cochinchinensis in the commercially available DOL, and were consistent with the TLC verification results. ConclusionThere is a phenomenon that heartwood of D. pinnata and D. cochinchinensis are sold as DOL in the market. 1H-NMR combined with multivariate statistical analysis can effectively distinguish DOL and its counterfeits, which can provide a reference for the identification of them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA