Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Chino | WPRIM | ID: wpr-1023871

RESUMEN

AIM:One of the important characteristics of the occurrence and development of triple-negative breast cancer(TNBC)is dysregulated cell metabolism.The aim of this study is to investigate the mechanism of pyruvate dehydrogenase E1 subunit alpha 1(PDHA1),a key enzyme component in aerobic glycolysis,affecting the proliferation,metastasis and invasion of TNBC.METHODS:(1)The expression levels of PDHA1 in breast cancer tissues and adja-cent tissues were analyzed by UALCAN database,KM-plotter database,Gene MANIA database and TCGA database.The expression of PDHA1 was compared according to tumor pathological stage,subtype classification and breast cancer bio-markers.The function of PDHA1 in TNBC was explored by gene enrichment analysis.(2)Immunohistochemistry assays were used to detect the expression of PDHA1 in human TNBC tissue and adjacent tissue samples.(3)Stable PDHA1 knockout and PDHA1 rescue TNBC MDA-MB-231 cells were constructed.The proliferation of MDA-MB-231 cells was de-tected by colony formation assay and cell counting assay.The regulatory effect of PDHA1 on the invasion and migration of MDA-MB-231 cells was detected by in vitro scratch assay and Transwell migration assay.RESULTS:Database analysis showed that the group with high PDHA1 expression in breast cancer had shorter survival and worse prognosis.In clinical specimens,the expression of PDHA1 in cancer tissues was higher than that in adjacent normal tissues.Knockout of PDHA1 inhibited the proliferation,metastasis,invasion and epithelial-mesenchymal transition of MDA-MB-231 cells.CONCLUSION:PDHA1 is overexpressed in TNBC,and it promotes cell proliferation and facilitates TNBC metastasis through the epithelial-mesenchymal transition pathway.

2.
Journal of Breast Cancer ; : 171-181, 2020.
Artículo en 0 | WPRIM | ID: wpr-835604

RESUMEN

Purpose@#C-X-C motif chemokine receptor 4 (CXCR4) and integrin αvβ6 play important roles in the malignant progression of multiple cancers. However, it remains unclear whether the expression of one or both proteins in breast cancer (BC) is of clinical significance. In this study, we investigated the expression of CXCR4 and integrin αvβ6 in BC tissues and their correlation with clinicopathological characteristics, including survival. @*Methods@#CXCR4 and αvβ6 expression in 111 BC tissues was examined by immunocytochemistry. Correlations between the expression of the 2 proteins and patient clinicopathological characteristic were investigated using the Kaplan–Meier method and the Cox proportional hazards model. @*Results@#CXCR4 and αvβ6 were overexpressed in BC tissue compared with normal breast tissue. Overexpression of both molecules was related to lymph node status (p = 0.013 and p = 0.022, respectively). αvβ6 overexpression was also associated with tumor size (p = 0.044). A positive correlation was detected between the expression of CXCR4 and αvβ6 (r = 0.649, p = 0.001), and co-overexpression of both molecules was associated with tumor size (p = 0.018) and lymph node metastasis (p = 0.015). Kaplan–Meier analysis revealed that overexpression of CXCR4, αvβ6, or both molecules was associated with short overall survival (OS; p < 0.001, p < 0.001, and p = 0.009, respectively) and disease-free survival (DFS; p < 0.001, p = 0.005, and p = 0.019, respectively). Multivariate analysis indicated that lymph node metastasis was an independent prognostic factor for unfavorable OS and DFS (p = 0.002 and p = 0.005, respectively), whereas co-overexpression of CXCR4 and αvβ6 was an independent prognostic factor only for OS (p = 0.043). @*Conclusion@#CXCR4 and αvβ6 may play synergistic roles in the progression of BC, and co-targeting of CXCR4 and αvβ6 could be a potential strategy for the prevention and treatment of BC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA