Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Frontiers of Medicine ; (4): 939-956, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010802

RESUMEN

A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM-fibroblast (FB) communications and one maintaining MNDCM status with least CM-FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell-cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell-cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.


Asunto(s)
Animales , Ratones , Diploidia , Corazón , Miocitos Cardíacos/metabolismo , Comunicación Celular , Perfilación de la Expresión Génica , Mitocondrias , Regeneración , Mamíferos/genética
2.
Genomics, Proteomics & Bioinformatics ; (4): 131-144, 2003.
Artículo en Inglés | WPRIM | ID: wpr-339514

RESUMEN

The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and alpha-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.


Asunto(s)
Secuencia de Aminoácidos , Secuencia de Bases , Análisis por Conglomerados , Codón , Genética , Componentes del Gen , Genoma Viral , Glicoproteínas de Membrana , Metabolismo , Proteínas de la Membrana , Genética , Metabolismo , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral , Genética , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA