Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Pharmaceutica Sinica B ; (6): 602-622, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1011272

RESUMEN

Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.

2.
Journal of Pharmaceutical Analysis ; (6): 901-912, 2022.
Artículo en Chino | WPRIM | ID: wpr-991116

RESUMEN

Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and systemic safety profiles have not yet been reported.Here we outline the development of a PTX-loaded tumor-targeting intravenous lipid emulsion(PTX Emul)and describe its characteristics,colloidal stability,and systemic safety profiles in terms of acute toxicity,long-term toxicity,and tox-icokinetics.We also compare PTX Emul with conventional PTX injection.Results showed that PTX Emul exhibited an ideal average particle size(approximately 160 nm)with narrow size distribution and robust colloidal stability under different conditions.Hypersensitivity reaction and hemolysis tests revealed that PTX Emul did not induce hypersensitivity reactions and had no hemolytic potential.In addition,where the alleviated systemic toxicity of PTX Emul may be attributed to the altered toxicokinetic characteristics in beagle dogs,including the decreased AUC and increased plasma clearance and volume of distribution,PTX Emul alleviated acute and long-term toxicity as evidenced by the enhanced the median lethal dose and approximate lethal dose,moderate body weight change,decreased bone marrow suppression and organ toxicity compared with those under PTX injection at the same dose.A fundamental understanding of the systemic safety profiles,high tumor-targeting efficiency,and superior antitumor activity in vivo of PTX Emul can provide powerful evidence of its therapeutic potential as a future treatment for breast cancer.

3.
Acta Pharmaceutica Sinica B ; (6): 1576-1585, 2020.
Artículo en Inglés | WPRIM | ID: wpr-828788

RESUMEN

Efficient mucosal delivery remains a major challenge for the reason of the respiratory tract mucus act as a formidable barrier to nanocarriers by trapping and clearing foreign particulates. The surface property of nanoparticles determines their retention and penetration ability within the respiratory tract mucus. However, the interaction between nanoparticles and mucus, and how these interactions impact distribution has not been extensively investigated. In this study, polymeric nanoparticles loaded with a baicalein-phospholipid complex were modified with two kinds of polymers, mucoadhesive and mucus-penetrative polymer. Systematic investigations on the physicochemical property, mucus penetration, transepithelial transport, and tissue distribution were performed to evaluate the interaction of nanoparticles with the respiratory tract. Both nanoparticles had a similar particle size and good biocompatibility, exhibited a sustained-release profile, but showed a considerable difference in zeta potential. Interestingly, mucus-penetrative nanoparticles exhibited a higher diffusion rate in mucus, deeper penetration across the mucus layer, enhanced cellular uptake, increased drug distribution in airways, and superior local distribution and bioavailability as compared to mucoadhesive nanoparticles. These results indicate the potential of mucus-penetrative nanoparticles in design of a rational delivery system to improve the efficiency of inhaled therapy by promoting mucus penetration and increasing local distribution and bioavailability.

4.
Acta Pharmaceutica Sinica ; (12): 956-62, 2014.
Artículo en Chino | WPRIM | ID: wpr-448677

RESUMEN

Injectable lipid emulsions have been routinely used in patients since 1960s as a nutritional supplement for patients requiring parenteral nutrition. In recent years, lipid injectable emulsions have been extensively studied as a kind of novel drug carrier, also the quality problems of the lipid emulsion attract more and more attentions gradually. Large diameter tail of injectable lipid emulsions as a significant quality control indicator should pay more attention. Regarding to the defect of detecting large diameter tail of lipid injectable emulsions in our country, the purpose of this article is to summarize the techniques of detecting large diameter tail, illustrate the impacts of large lipid droplet on the quality of lipid injectable emulsions, emphasize the importance of detecting large diameter tail in lipid emulsions and provide guidance for researching and developing lipid emulsions in domestic market.

5.
Acta Pharmaceutica Sinica ; (12): 1600-6, 2014.
Artículo en Chino | WPRIM | ID: wpr-457200

RESUMEN

Bicyclol with benzyl alcohol structure, is a poorly water-soluble drug, used for the treatment of chronic hepatitis B. To increase the drug solubility and oral bioavailability, a Bicyclol-phospholipid complex was studied on its preparation, formation mechanism, and the influence on drug physicochemical properties and oral absorption. The complex was prepared by a solvent evaporation method. The optimal formulation was selected by orthogonal experimental design, and a reasonable evaluating method of the complexation rate was established. Various methods, such as differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and 31P nuclear magnetic resonance (31P-NMR), were used to explore the phase state and formation mechanism of the complex. The solubility of drug in complex was investigated in water/n-octanol. Preliminary study of its absorption and liver tissue distribution in rats was also carried out. The results showed that Bicyclol and phosphatidylcholine can be complexed entirely in the molar ratio 1 : 2. Bicyclol was dispersed in phospholipids as amorphous state. They were combined by intermolecular hydrogen bond due to charge transfer effect which occurred between the two polarities of the double bond between phosphorus and oxygen (P=O) of phosphatidylcholine and benzalcohol group of Bicyclol. The solubility of the complex compared to the active pharmaceutical ingredient (API) was effectively enhanced 5.75 times in water and 7.72 times in n-octanol, separately. In addition, drug concentrations were also enhanced 43 times in plasma and 13 times in liver with one hour after administering the complex to rats via oral gavage. All of these indicated that Bicyclol with benzalcohol group can interact with phospholipids to form complex, improving drug's physicochemical properties, thus further increasing its absorption and target tissue distribution. This study also provided theoretical reference for the research of other benzalcohol derivatives complexed with phospholipids.

6.
Acta Pharmaceutica Sinica ; (12): 1292-6, 2013.
Artículo en Chino | WPRIM | ID: wpr-445600

RESUMEN

An HPLC-DAD-MS/MS method was developed for rapid analysis and identification of degradation products of buagafuran. Buagafuran and degradation products were separated on a Zorbax C8 column (5 microm, 4.6 mm x 150 mm) using acetonitrile-water (78 : 22) as mobile phase. The elutes were detected with diode array detector and tandem mass spectrometer via electrospray ionization source in positive ion mode. According to analysis of the retention time, UV spectra and MS, MS/MS data, combined with the possible degradation reaction of buagafuran, the structures of main degradation products were inferred. The results showed that six main degradation products were oxidation or peroxidation productions of buagafuran. Degradation product A was a double bond epoxidation product of buagafuran, degradation products B, C, D and E were the further oxidation products of degradation product A, degradation product F was a peroxidation product of buagafuran. The results indicated that the established method was effective in the rapid identification of the degradation products of buagafuran.

7.
Acta Pharmaceutica Sinica ; (12): 1698-704, 2013.
Artículo en Chino | WPRIM | ID: wpr-445453

RESUMEN

The pharmacokinetics and tissue distributions of the novel paclitaxel microemulsion based on the L-OH lipid complex made in our laboratory were studied in this article with the commercial paclitaxel injection in cremophor as reference preparation by injected intravenously with single dose of 5 mg x kg(-1) in rats. LC-MS/MS method was used to determine the drug concentration in plasma and calculate the pharmacokinetic parameters. [3H]-paclitaxel was used to reveal the tissue distributions of different organs in 0.5 h, 3 h, 24 h and 120 h. The results indicated that the AUC of the emulsion group descended to 42.55%, with the CLz and Vz increased by 2.27 times and 3.81 times respectively. Tissue distribution results revealed that the emulsion showed a significantly increase in liver and spleen with a peak concentration up to 5 times; a slightly increase was observed in lung with no statistical differences; a significantly decrease in heart, kidney, gastrointestinal tract, bone marrow, aorta, thymus, pancreas, fat, muscle, skin, seminal vesicle, reproductive organs and brain with a drop of 40%-80%. These results indicated that paclitaxel microemulsion based on L-OH lipid complexes can remarkably reduced the blood exposure, accelerate plasma clearance rate and increase distribution volume. The fact that paclitaxel microemulsion tended to be uptake by reticuloendothelial system (RES) contributed to the target in liver, spleen and lung, and help to reduce the toxicity in blood, heart, kidney and gastrointestinal tract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA