Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
International Journal of Oral Science ; (4): 27-27, 2019.
Artículo en Inglés | WPRIM | ID: wpr-772258

RESUMEN

Bone remodelling keeps going through the lifespan of human by bone formation and bone resorption. In the craniofacial region, mandibles act as the main force for biting and chewing, and also become susceptible to a common bone-loss disease, namely, apical periodontitis, once infected dental pulp is not treated timely, during which bone resorption occurs from the apical foramen to the apical bone area. Although conventional root canal treatment (RCT) can remove the most of the infection, chronical apical periodontitis due to incomplete removal of dental pulp and subsequent microleakage will become refractory and more challenging, and this process has scarcely been specifically studied as a bone remodelling issue in rat models. Therefore, to study chronical and refractory apical periodontitis owing to incomplete cleaning of infected dental pulp and microleackage in vivo, we establish a modified rat model of gradually progressive apical periodontitis by sealing residual necrotic dental pulp and introducing limited saliva, which simulates gradually progressive apical periodontitis, as observed in the clinical treatment of chronical and refractory apical periodontitis. We show that bone-loss is inevitable and progressive in this case of apical periodontitis, which confirms again that complete and sound root canal treatment is crucial to halt the progression of chronical and refractory apical periodontitis and promote bone formation. Interestingly, bone remodelling was enhanced at the initial stage of apical periodontitis in this model while reduced with a high osteoblast number afterwards, as shown by the time course study of the modified model. Suggesting that the pathological apical microenvironment reserve its hard tissue formation ability to some degree but in a disturbed manner. Hopefully, our findings can provide insights for future bone regenerative treatment for apical periodontitis-associated bone loss.

2.
International Journal of Oral Science ; (4): 13-13, 2018.
Artículo en Inglés | WPRIM | ID: wpr-772302

RESUMEN

β-Catenin plays a critical role in cartilage formation and development. To further understand the role of β-catenin in osteoarthritis (OA) development in temporomandibular joint (TMJ), we have generated β-catenin conditional activation mice (β-cat(ex3) ) by breeding Agc1-CreER mice with β-catenin mice. Results of histologic analysis showed the progressive TMJ defects in 3- and 6-month-old β-cat(ex3) mice (tamoxifen induction was performed at 2 weeks of age), including decreased chondrocyte numbers in the superficial layer associated with less Alcian blue staining, increased numbers of hypertrophic chondrocytes in deep layers, and rough articular surface. Compared to the TMJ phenotype of β-cat(ex3) mice, β-cat(ex3) mice showed much severe morphological defects in the superficial layer of TMJ. This may reflect that Agc1-CreER mice could efficiently target cells in the superficial layer of TMJ. Results of immunostaining showed significantly increased expression of MMP13, Col-X, Adamts4, and Adamts5 in TMJ of β-cat(ex3) mice. Results of proliferating cell nuclear antigen (PCNA), Ki67, and terminal deoxinucleotidyl transferase-mediated dUTP-fluorescein nick end labeling (TUNEL) staining further demonstrated that cell proliferation was decreased and cell apoptosis was increased in condylar cartilage of β-cat(ex3) mice. Our findings indicate that abnormal upregulation of β-catenin in TMJ leads to defects assembling to OA-like phenotype, further demonstrating that β-catenin plays a critical role in TMJ pathogenesis.


Asunto(s)
Animales , Ratones , Agrecanos , Metabolismo , Apoptosis , Cartílago Articular , Metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Etiquetado Corte-Fin in Situ , Osteoartritis , Metabolismo , Fenotipo , Transducción de Señal , Propiedades de Superficie , Articulación Temporomandibular , Metabolismo , beta Catenina , Metabolismo
3.
West China Journal of Stomatology ; (6): 328-333, 2017.
Artículo en Chino | WPRIM | ID: wpr-357513

RESUMEN

microRNAs (miRNAs) are endogenous short, noncoding RNAs that can negatively regulate gene expression post-transcriptionally. miRNAs are involved in multiple developmental events in various tissues and organs, including dental enamel development. Any disruption during enamel development may result in inherited enamel malformations. This article reviews the expression and function of miRNAs in enamel development.


Asunto(s)
Esmalte Dental , Expresión Génica , MicroARNs
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA