Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 159-165, 2020.
Artículo en Chino | WPRIM | ID: wpr-869150

RESUMEN

Objective:To compare the application of 13N-NH 3, 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) PET/CT imaging in the diagnosis and evaluation of suspected cerebral glioma. Methods:From September 2010 to December 2017, ninety patients (54 males, 36 females; age: (40.0±14.0) years) in the First Affiliated Hospital of Sun Yat-sen University with suspected glioma based on clinical diagnosis, who underwent 13N-NH 3, 11C-MET and 18F-FDG PET/CT imaging, were prospectively enrolled in the study. All patients were confirmed by histology or clinical and radiological follow-up. Images were interpreted by visual evaluation (higher radioactive uptake in lesions than that in the contralateral normal brain parenchyma was considered as positive (+ ), equal/lower were considered as negative (-)) and semi-quantitative analysis (the maximum standardized uptake value (SUV) of lesion (L) to the mean SUV of normal white matter (WM) (L/WM ratio)). Receiver operating characteristic (ROC) curve analysis was used and the area under curves (AUCs) were calculated and compared. The diagnostic efficacies of 3 imaging methods and the combination for diagnosing gliomas and the abilities to differentiating high-grade gliomas (HGG) and low-grade gliomas (LGG) were compared. Results:In 90 patients, 30 HGG, 27 LGG, 10 non-glioma brain tumors and 23 non-neoplastic lesions (NNL) were diagnosed. On visual evaluation, the sensitivities for differentiating tumors from NNL were 62.7%(42/67), 94.0%(63/67) and 35.8% (24/67) for 13N-NH 3, 11C-MET and 18F-FDG PET/CT respectively, while the specificities were 95.7%(22/23), 56.5% (13/23) and 65.2% (15/23), and the accuracies were 71.1%(64/90), 84.4%(76/90) and 43.3% (39/90). Taking the metabolic patterns of + /+ /+ , + /+ /- and + /-/- ( 11C-MET/ 13N-NH 3/ 18F-FDG) as the diagnosis standard of tumor lesions, the specificity and accuracy of the combined method increased to 73.9%(17/23) and 88.9%(80/90) with the sensitivity remaining the same (94.0%, 63/67). ROC curve analysis (L/WM) showed that the sensitivity, specificity and AUC were 64.2%(43/67), 100%(23/23) and 0.819 for 13N-NH 3 PET/CT, and 89.6%(60/67), 69.6%(16/23) and 0.840 for 11C-MET PET/CT ( z=-0.316, P>0.05). The accuracy for differentiating high and low grade glioma were 86.0% (49/57), 87.7%(50/57) and 93.0%(53/57) for 13N-NH 3, 11C-MET and 18F-FDG PET/CT, with the AUC of 0.896, 0.928 and 0.964, respectively ( z values: -0.554 to 1.334, all P>0.05). Conclusions:13N-NH 3 PET/CT imaging has remarkably high specificity but low sensitivity for the differentiation of brain tumors from NNL. 11C-MET PET/CT imaging was found to be highly useful for detection of brain tumors. However, like 18F-FDG, high MET uptake is frequently observed in some NNL. 13N-NH 3, 11C-MET and 18F-FDG PET/CT imaging all appear to be valuable for evaluating the histological grade of gliomas, and the combination of them is more useful for the accurate diagnosis of glioma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA