Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
China Journal of Chinese Materia Medica ; (24): 3190-3198, 2023.
Artículo en Chino | WPRIM | ID: wpr-981455

RESUMEN

In the new stage for intelligent manufacturing of traditional Chinese medicine(TCM) from pilot demonstration to in-depth application and comprehensive promotion, how to raise the degree of intelligence for the process quality control system has become the bottleneck of the development of TCM production process control technology. This article has sorted out 226 TCM intelligent manufacturing projects that have been approved by the national and provincial governments since the implementation of the "Made in China 2025" plan and 145 related pharmaceutical enterprises. Then, the patents applied by these pharmaceutical enterprises were thoroughly retrieved, and 135 patents in terms of intelligent quality control technology in the production process were found. The technical details about intelligent quality control at both the unit levels such as cultivation, processing of crude herbs, preparation pretreatment, pharmaceutical preparations, and the production workshop level were reviewed from three aspects, i.e., intelligent quality sensing, intelligent process cognition, and intelligent process control. The results showed that intelligent quality control technologies have been preliminarily applied to the whole process of TCM production. The intelligence control of the extraction and concentration processes and the intelligent sensing of critical quality attributes are currently the focus of pharmaceutical enterprises. However, there is a lack of process cognitive patent technology for the TCM manufacturing process, which fails to meet the requirements of closed-loop integration of intelligent sensing and intelligent control technologies. It is suggested that in the future, with the help of artificial intelligence and machine learning methods, the process cognitive bottleneck of TCM production can be overcome, and the holistic quality formation mechanisms of TCM products can be elucidated. Moreover, key technologies for system integration and intelligent equipment are expected to be innovated and accelerated to enhance the quality uniformity and manufacturing reliability of TCM.


Asunto(s)
Inteligencia Artificial , Medicina Tradicional China , Reproducibilidad de los Resultados , Control de Calidad , Inteligencia , Preparaciones Farmacéuticas
2.
China Journal of Chinese Materia Medica ; (24): 3180-3189, 2023.
Artículo en Chino | WPRIM | ID: wpr-981454

RESUMEN

In this paper, 50 batches of representative traditional Chinese medicine tablets were selected and the disintegration time was examined with the method in Chinese Pharmacopoeia. The disintegration time and disintegration phenomenon were recorded, and the dissolution behaviors of water-soluble and ultraviolet-absorbent components during the disintegration process of tablets were characterized by self-control method. The results revealed that coating type and raw material type influenced the disintegration time of tablets. It was found that only 4% of traditional Chinese medicine tablets had obvious fragmentation during the disintegration process, while 96% of traditional Chinese medicine tablets showed gradual dissolution or dispersion. Furthermore, according to the disintegration speed, disintegration phenomenon, and whether the cumulative dissolution of measured components was > 90% at complete disintegration, a disintegration behavior classification system(DBCS) was created for the regular-release traditional Chinese medicine tablets. As a result, the disintegration behaviors of 50 batches of traditional Chinese medicine tablets were classified into four categories, i.e. ⅠA_2, ⅠB_1, ⅡB_1, and ⅡB_2. traditional Chinese medicine tablets(Class I) with disintegration time ≤ 30 min were defined to be rapid in disintegration, which can be the objective of optimization or improvement of Chinese herbal extract(semi extract) tablets. Different drug release models were used to fit the dissolution curve of traditional Chinese medicine tablets with gradual dissolution or dispersion phenomenon(i.e. Type B tablets). The results showed that the dissolution curves of water-soluble components in the disintegration process conformed to the zero order kinetics and the Ritger-Peppas model. It could be inferred that the disintegration mechanisms of type B tablets were a combination of dissolution controlled and swelling controlled mechanisms. This study contributes to understanding the disintegration behavior of traditional Chinese medicine tablets, and provides a reference for the design and improvement of disintegration performance of traditional Chinese medicine tablets.


Asunto(s)
Comercio , Medicina Tradicional China , Comprimidos , Agua , Composición de Medicamentos
3.
China Journal of Chinese Materia Medica ; (24): 3169-3179, 2023.
Artículo en Chino | WPRIM | ID: wpr-981453

RESUMEN

Oral solid dosage(OSD) occupies a key position in the market of Chinese patent medicines and new traditional Chinese medicines. Processing route is the foundation for the research and development of traditional Chinese medicine OSDs. On the basis of prescriptions and preparation methods of 1 308 traditional Chinese medicine OSDs recorded in the Chinese Pharmacopoeia, we summarized the patterns of processing routes of both modern dosage forms(tablets, granules, and capsules) and traditional dosage forms(pills and powder) and constructed a manufacturing classification system(MCS) based on the processing routes. Based on the MCS, statistical analyses were conducted respectively on medicinal materials, pharmaceutical excipients, extraction solvents in the pretreatment process, crushed medicinal materials, methods of concentration and purification, and methods of drying and granulation, aiming to uncover the process features. The results showed that each dosage form can be prepared via different routes with different processing methods of decoction pieces and raw materials for dosage preparation. The raw materials for dosage form preparation of traditional Chinese medicine OSDs included total extract, semi-extract, and total crushed powder, which accounted for different proportions. The raw materials for traditional dosage forms are mainly decoction pieces powder. Semi-extracts are the main raw materials for tablets and capsules, which account for 64.8% and 56.3%, respectively. Total extracts are the main raw materials for granules, with a proportion of 77.8%. Compared with tablets and capsules, traditional Chinese medicine granules with dissolubility requirements had a larger proportion of water extraction process, a higher proportion of refining process(34.7%), and a lower proportion of crushed medicinal mate-rials in semi-extract granules. There are four ways to add volatile oil to the modern dosage forms of traditional Chinese medicine. In addition, some new technologies and processes have been used in concentration, filtration, and granulation processes of traditional Chinese medicine OSDs, and the application of pharmaceutical excipients is diversified. The results of this study are expected to provide reference for the processing route design and upgrading of OSDs for new traditional Chinese medicines.


Asunto(s)
Cápsulas , Excipientes , Medicina Tradicional China , Polvos
4.
China Journal of Chinese Materia Medica ; (24): 3162-3168, 2023.
Artículo en Chino | WPRIM | ID: wpr-981452

RESUMEN

The pharmaceutical manufacturing model is gradually changing from intermittent manufacturing to continuous manufacturing and intelligent manufacturing. This paper briefly reviewed the supervision and research progress in continuous pharmaceutical manufacturing in China and abroad and described the definition and advantages of continuous pharmaceutical manufacturing. The continuous manufacturing of traditional Chinese medicine(TCM) at the current stage was summarized in the following three terms: the enhancement of the continuity of intermittent manufacturing operations, the integration of continuous equipment to improve physical continuity between units, and the application of advanced process control strategies to improve process continuity. To achieve continuous manufacturing of TCM, the corresponding key technologies, such as material property characterization, process modeling and simulation, process analysis technology, and system integration, were analyzed from the process and equipment, respectively. It was proposed that the continuous manufacturing equipment system should have the characteristics of high speed, high response, and high reliability, "three high(H~3)" for short. Considering the characteristics and current situation of TCM manufacturing, based on the two dimensions of product quality control and production efficiency, a maturity assessment model for continuous manufacturing of TCM, consisting of operation continuity, equipment continuity, process continuity, and quality control continuity, was proposed to provide references for the application of continuous manufacturing technology for TCM. The implementation of continuous manufacturing or the application of key continuous manufacturing technologies in TCM can help to systematically integrate advanced pharmaceutical technology elements and promote the uniformity of TCM quality and the improvement of production efficiency.


Asunto(s)
Medicina Tradicional China , Reproducibilidad de los Resultados , China , Control de Calidad , Preparaciones Farmacéuticas
5.
China Journal of Chinese Materia Medica ; (24): 2841-2855, 2023.
Artículo en Chino | WPRIM | ID: wpr-981419

RESUMEN

Focusing on the development and quality improvement strategy of the traditional Chinese medicine(TCM) industry, the scientific and technological innovation of the new engineering of TCM should be paid attention to solve the "stuck neck" dilemma. Under the background of the ecological and industrial revolution of the scientific and technological innovation system, the super-scale information interaction and multi-dimensional integration will inevitably lead to profound changes in the manufacturing mode of TCM. Manufacturing measurement of TCM is formed on the basis of the reliability engineering theory of process control of TCM production. It is the development extension of system theory and system science ideas and a cross-fertilization discipline that combines theory with practice and adheres to the "four-oriented" re-epistemology improvement of the TCM discipline. In response to the problems of complex raw material sources, coarse process technology, unclear material basis, and poor applicability of equipment and technology in the manufacture of TCM, the transformation research mode of "aiming at the integration of pharmaceutical industry-developing intelligent production line-enabling industrial transformation" has been developed. This paper proposed the four key engineering technical problems, i.e., the identification of critical quality attributes(CQA) in the manufacture of TCM, the quality by design(QbD) and product development of the manufacturing process of TCM, the quality transfer principle and multivariate process capability index of TCM manufacturing, and the development of measurement technology and equipment of the manufacturing measurement of TCM, to achieve the systematization of quality control indicators, real-time process control, digitalization of manufacturing process, transparency of quality transfer, and intelligent whole-process control. In this paper, the new concepts, new theories, and new technologies provide a reference for the industrialization of TCM.


Asunto(s)
Medicina Tradicional China , Reproducibilidad de los Resultados , Comercio , Industria Farmacéutica , Control de Calidad
6.
China Journal of Chinese Materia Medica ; (24): 3988-3996, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008594

RESUMEN

Solubility is an important sensory quality attribute of traditional Chinese medicine(TCM) granules. In this paper, 90 batches of granules(30 batches of TCM formula granules, 30 batches of Chinese patent medicine granules and 30 batches of Japanese Kampo granules) were used as the research objects. The turbidity sensor was used to characterize the turbidity curve of the granule dissolution process. The classification system of granule dissolution behaviors was constructed from three dimensions: dissolution degree, equilibrium time, and dissolution mechanism. According to the equilibrium time, the granule dissolution rates were divided into three categories : faster(<100 s), general(101-300 s) and slow(>301 s). According to the turbidity curve profile, the granule dissolution mechanisms were classified into dissolution-controlled type(α-type), dispersion-controlled type(β-type), and dispersion-controlled type followed by dissolution-controlled type(γ-type). The proportion of TCM formula granules, Chinese patent medicine granules and Japanese Kampo granules with complete dissolution or slight turbidity at the end of dissolution was 46.7%, 96.7%, and 10.0%. The proportion of TCM formula granules, Chinese patent medicine granules, and Japanese Kampo granules with faster dissolution rates(<100 s) was 23.3%, 26.7%, and 40.0%. The average dissolution rate of Japanese Kampo granules was faster than that of TCM formula granules, and it was slightly faster than the average dissolution rate of Chinese patent medicine granules. The dissolution mechanism of Chinese patent medicine granules was mainly α-type, while that of Japanese Kampo granules was mainly β-type, and the three types of dissolution mechanisms of TCM formula granules accounted for a relatively average. The purpose of improving the solubility and dispersion of granules can be achieved by combining the comprehensive application of various functional excipients with the small dosage of Japanese Kampo granules and the wide addition scope of excipients. In the process of transforming TCM compound prescriptions into formulas, there is still much room for innovation in formula excipients and process optimization.


Asunto(s)
Medicina Tradicional China , Medicamentos Herbarios Chinos , Excipientes , Solubilidad , Medicamentos sin Prescripción , Productos Biológicos
7.
China Journal of Chinese Materia Medica ; (24): 3977-3987, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008593

RESUMEN

In the context of Pharma 4.0, the design tools that support the pharmaceutical Quality by Design(QbD) are iterating fast toward intelligent or smart design. The conventional development methods for traditional Chinese medicine(TCM) preparations have the limitations such as over dependence on experience, low dimensions for the designed experiment parameters, poor compatibility between the process and equipment, and high trial-and-error cost during process scale-up. Therefore, this paper innovatively proposed the intelligent co-design involving material, process, and equipment for manufacturing high-quality TCM preparations, and introduced the design philosophy, targets, tools, and applications with TCM oral solid dosage(OSD) as an example. In terms of design philosophy, the pharmaceutical design tetrahedron composed of critical material attributes, critical process parameters, critical equipment attributes, and critical quality attributes was developed. The design targets were put forward based on the product performance classification system. The design tools involve a design platform that contains several modules, such a as the iTCM material database, the processing route classification system, the system modeling and simulation, and reliability-based optimization. The roles of different modules in obtaining essential and universal design knowledge of the key common manufacturing units were introduced. At last, the applications of the co-design methodology involving material, process, and equipment in the high shear wet granulation process development and the improvement of the dissolving or dispersion capability of TCM formula granules are illustrated. The research on advanced pharmaceutical design theory and methodology will help enhance the efficiency and reliability of drug development, improve the product quality, and promote the innovation of high-end TCM products across the industry.


Asunto(s)
Medicina Tradicional China , Reproducibilidad de los Resultados , Control de Calidad , Simulación por Computador , Comercio , Preparaciones Farmacéuticas , Medicamentos Herbarios Chinos
8.
China Journal of Chinese Materia Medica ; (24): 4969-4977, 2021.
Artículo en Chino | WPRIM | ID: wpr-921634

RESUMEN

The high shear wet granulation(HSWG) process of Chinese medicine has a complicated mechanism. There are many influencing factors that contribute to this process. In order to summarize the manufacturability of different kinds of materials in HSWG, this paper constructed a material library composed of 11 materials, including 4 Chinese medicine extracts and 7 pharmaceutical excipients. Each material was described by 22 physical parameters. Several binders were employed, and their density, viscosity and surface tension were characterized. Combining empirical constraints and the principle of randomization, 21 designed experiments and 8 verification experiments were arranged. The partial least squares(PLS) algorithm was used to establish a process model in prediction of the median granule size based on properties of raw materials and binders, and process parameters. The surface tension and density of binders, as well as the maximum pore saturation were identified as key variables. In the latent variable space of the HSWG process model, all materials could be divided into three categories, namely the Chinese medicine extracts, the diluents and the disintegrants. The granulation of Chinese medicine extracts required low viscosity and low amount of binder, and the resulted granule sizes were small. The diluent powders occupied a large physical space, and could be made into granules with different granule sizes by adjusting the properties of binders. The disintegrants tended to be made into large granules under the condition of aqueous binder. The combination use of material database and multivariate modeling method is conducive to innovate the knowledge discovery of the wet granulation process of Chinese medicine, and provides a basis for the formulation and process design based on material attributes.


Asunto(s)
Composición de Medicamentos , Excipientes , Medicina Tradicional China , Tamaño de la Partícula , Polvos , Comprimidos , Tecnología Farmacéutica
9.
Acta Pharmaceutica Sinica ; (12): 3547-3554, 2021.
Artículo en Chino | WPRIM | ID: wpr-906827

RESUMEN

According to the commonly used tablet compressibility, compactability and tabletability equation, the influence of pressure range on the fitting results and parameters of different compression equations was studied, and the optimal pressure range of different equations was determined. Plastic material microcrystalline cellulose (MCC) PH102, brittle material spray dried lactose and Chinese medicine Sanqi were used as experimental objects, the compression curves of tablets were obtained by the combination of dies with different diameters. For Heckel equation, the shape of Heckel section of different materials is not uniform, and the specified linear fitting range cannot be obtained, therefore, different distances between fitting pressure starting point and starting point were set to observe the influence of pressure range on R2 of Heckel equation. The Kawakita equation, Gurnham equation, Ryshkewitch-Duckworth (R-D) equation and Power equation are fitted in three different pressure ranges of 15-200, 15-300 and 15-400 MPa, respectively. In order to find the best linear region of Heckel equation, the 3D scatter diagram of "starting point of pressure, pressure range and R2" is drawn. The best linear pressure ranges of Heckel curves of MCC, lactose and Sanqi were 20-170, 20-220 and 10-90 MPa, respectively. It is proved that the 3D scatter diagram is an effective method to find the linear range of Heckel equation. The change of pressure range has little influence on the curve fitting effect and compression parameters of Kawakita equation, Gurnham equation and Ryshkewitch-Duckworth equation. The low pressure range of 15-200 MPa can meet the fitting requirements of Kawakita equation, Gurnham equation, R-D equation and Power equation for different materials. Therefore, only by optimizing the pressure range, can the good fitting effect be ensured and the obtained compression parameters be more reliable and interpretable.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 113-120, 2021.
Artículo en Chino | WPRIM | ID: wpr-906027

RESUMEN

Objective:To investigate the influence of particle size on density of binary powder mixture of traditional Chinese medicine (TCM), and to provide reference for formulation design of TCM preparations. Method:Three groups of binary powder mixtures with different particle size ratio (<italic>α</italic>) were constructed, namely Oroxyli Semen-microcrystalline cellulose PH102 (MCC PH102) (<italic>α</italic>=0.071 7), Stellariae Radix-MCC PH200 (<italic>α</italic>=0.158 7) and Angelicae Sinensis Radix-MCC KG802 (<italic>α</italic>=0.840 6). Binary powder mixtures with nine mass ratios (90∶10, 80∶20, 70∶30, 60∶40, 50∶50, 40∶60, 30∶70, 20∶80 and 10∶90) were prepared for each group, and 27 binary powder mixtures containing TCM were obtained. The particle size distribution, density and other parameters of six single materials and 27 binary powder mixtures were characterized. Based on the packing theory and multivariate analysis, the effects of particle size related parameters on the filling structure and density of the binary powder mixtures were elucidated. Result:The <italic>α</italic> of Angelicae Sinensis Radix-MCC KG802 binary mixture system was larger than the replacement rate (<italic>α</italic><sub>r</sub>=0.741 0), and its density had a good linear relationship with the mass ratio, which conformed to the replacement mechanism. The <italic>α</italic> of Oroxyli Semen-MCC PH102 binary mixture system was smaller than the critical ratio (<italic>α</italic><sub>c</sub>=0.154 0), and its density was nonlinear with the mass ratio of components, which conformed to the filling mechanism. The <italic>α</italic> of Stellariae Radix-MCC PH200 binary mixture system was between <italic>α</italic><sub>c</sub> and <italic>α</italic><sub>r</sub>, its density was affected by both of replacement mechanism and filling mechanism. Based on the partial least squares (PLS) model, the variable importance in the projection (VIP) analysis further proved that the mixing mass ratio (VIP value=1.62), <italic>α</italic> (VIP value=1.13) and <italic>D</italic><sub>10</sub> (the corresponding particle size when the particle size distribution accumulated to 10%, VIP value=1.06) were the key factors affecting the density of binary powder mixtures of TCM. Conclusion:In the binary powder mixtures of TCM, the linearity relationship between density and mass ratio is largely depended on particle size difference of components.

11.
China Journal of Chinese Materia Medica ; (24): 274-284, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008335

RESUMEN

In this paper, five representative Chinese herbal decoction pieces of Scutellariae Radix, Paeoniae Radix Alba, vinegar-processed Corydalis Rhizoma, Polygoni Multiflori Radix Praeparata and Lonicerae Japonicae Flos were selected to prepare the corresponding fine powder of pieces, extract powder, semi-extract powder and physical mixed powder. The physical properties of 20 kinds of powders, such as related parameters of particle size, density, stability and flowability, were evaluated comprehensively. The compression curves of powder porosity and tensile strength changing with pressure were plotted, and the Heckel equation and the Kawakita equation were used to describe the powder compression behavior. The results showed that compared with the fine powder of pieces, the compressibility of the semi-extract powder and the extract powder was significantly improved. Compared with the extract powder, the particle size and relative uniformity of the semi-extract powder were increased, indicating that the uniformity of the powder was improved. Besides, the semi-extract powder could reduce the hygroscopicity of the powder. Particularly, the semi-extract powder of Scutellariae Radix, Paeoniae Radix Alba and vinegar-processed Corydalis Rhizoma could maintain the porous structure of the tablet even under a high tableting pressure, which was beneficial to tablet disintegration. For some traditional Chinese medicines(such as Lonicerae Japonicae Flos), the semi-extract powder could reduce the viscosity, which avoided the sticking in the die compression. The semi-extract powder and the physical mixture powder prepared by the same Chinese herbal decoction pieces had similar physical properties and compression behaviors. Principal component analysis(PCA) was carried out on the 17 physical attributes and 5 compression parameters of the powder. It was found that the first principal component mainly reflected the differences among the material sources, while the second principal component could reflect the differences among fine powder of pieces, extract powder, semi-extract powder and physical mixed powder originating from the same Chinese herbal decoction pieces. In this paper, the mechanism of "unification of drugs and excipients" of Chinese medicine semi-extract powder was explained in terms of physical properties and compression behavior of powders, which provided reference for the formulation design and process development of Chinese medicine tablets.


Asunto(s)
Composición de Medicamentos , Medicamentos Herbarios Chinos , Excipientes , Medicina Tradicional China , Extractos Vegetales , Polvos , Comprimidos , Tecnología Farmacéutica
12.
China Journal of Chinese Materia Medica ; (24): 267-273, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008334

RESUMEN

In this study, the texture analyzer acupuncture pressure sensor was used to objectively characterize the "herb soaking with exact amount of water" for moistening process of ginseng. The single factor rotation experiment was used to investigate the effects of puncture speed, puncture depth and puncture site on puncture force and work. According to ginseng processing method in Chinese Pharmacopoeia, ginseng medicinal materials with diameters of about 1 cm and 2 cm were selected, and puncture experiments were carried out at the set measurement time to determine the hardness, work and water absorption of the ginseng moistening process. The endpoint threshold for the ginseng softening process was determined and verified. To reflect the actual internal conditions of the ginseng softening process, the puncture depth was preferably 70%, and the puncture speed was 30 mm·min~(-1). In the ginseng moistening process, the softening hardness and the puncture work were in accordance with the first-order kinetic equation y=a×exp(-k×x). The 0 h initial hardness a of 1 cm and 2 cm ginseng herbs were 289.8 N and 1 227 N, and the rate constants K were 0.149 4 N·h~(-1) and 0.100 7 N·h~(-1), respectively. After the ginseng was completely softened, the force required for puncture was 10 N, which can be used as the standard for "drug penetration". At this time, the water absorption rate of ginseng was 70%-100%. The softening time of ginseng with a diameter of 1 cm was about 20-22 h, and the softening time of ginseng with a diameter of 2 cm was about 40-46 h. A needle-type pressure sensor was used to accurately determine the end point of the softening process of ginseng and reduce the loss of active ingredients. The study results provide reference for the softening process kinetics and the process intelligent monitoring of other dried roots and rhizomes.


Asunto(s)
Medicamentos Herbarios Chinos , Panax , Raíces de Plantas , Rizoma , Tecnología Farmacéutica , Agua
13.
China Journal of Chinese Materia Medica ; (24): 259-266, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008333

RESUMEN

In this paper, the inline turbidity sensor technology was used to quantify the turbidity of the solution during the dissolution of Chinese medicine granules. The probe measurement position and the magnetic stirring speed were optimized. As a result, the stirring speed was 400 r·min~(-1), and the probe position was at 1/4 of the diameter of the beaker. The measurement results were accurate and reliable. Totally 105 batches of commercially available Chinese medicine granules were collected and dissolved according to the requirements of the Chinese Pharmacopoeia. At the time point of 5 min, 57 batches of granules were completely dissolved, and the corresponding turbidity values ranged between 0-70 FTU; 32 batches of granules showed a slight turbidity, and the corresponding turbidity values ranged between 70-350 FTU; 14 batches of granule solution were turbid, and the corresponding turbidity values ranged between 350-2 000 FTU; two batches of granule solution were heavily turbid, and the corresponding turbidity values were >2 000 FTU. Among the above results, the number of batches in line with the pharmacopoeia dissolution requirement was 84.76%, and the dissolution of some granules still needed to be improved. The turbidity sensor recorded the change curve of turbidity value over time(solubility behavior curve). The degree of important of disintegration and dissolution during the dissolution process showed disintegration > dissolution, disintegration≈dissolution, disintegration < dissolution. The dissolution behavior of the granules can be classified into three categories. The analysis of the mechanism in the process of granule solubility provides a basis for product process improvement.


Asunto(s)
Medicina Tradicional China , Preparaciones Farmacéuticas/química , Solubilidad , Comprimidos , Tecnología Farmacéutica
14.
China Journal of Chinese Materia Medica ; (24): 250-258, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008332

RESUMEN

In this paper, a real time release testing(RTRT) model for predicting the disintegration time of Tianshu tablets was established on the basis of the concept of quality by design(QbD), in order to improve the quality controllability of the production process. First, 49 batches of raw materials and intermediates were collected. Afterwards, the physical quality attributes of all materials were comprehensively characterized. The partial least square(PLS) regression model was established with the 72 physical quality attributes of raw materials and intermediates as input and the disintegration time(DT) of uncoated tablets as output. Then, the variable screening was carried out based on the variable importance in the projection(VIP) indexes. Moisture content of raw materials(%HR), tapped density of wet masses(D_c), hygroscopicity of dry granules(%H), moisture content of milling granules(%HR) and Carr's index of mixed granules(IC) were determined as the potential critical material attributes(pCMAs). According to the effects of interactions of pCMAs on the performance of the prediction model, it was finally determined that the wet masses' D_c and the dry granules'%H were critical material attributes(CMAs). A RTRT model of the disintegration time prediction was established as DT=34.09+2×D_c+3.59×%H-5.29×%H×D_c,with R~2 equaling to 0.901 7 and the adjusted R~2 equaling to 0.893 3. The average relative prediction error of validation set for the RTRT model was 3.69%. The control limits of the CMAs were determined as 0.55 g·cm~(-3)<D_c<0.63 g·cm~(-3) and 4.77<%H<7.59 according to the design space. The RTRT model of the disintegration time reflects the understanding of the process system, and lays a foundation for the implementation of intelligent control strategy of the key process of Tianshu Tablets.


Asunto(s)
Composición de Medicamentos , Liberación de Fármacos , Medicamentos Herbarios Chinos/química , Análisis de los Mínimos Cuadrados , Solubilidad , Comprimidos
15.
China Journal of Chinese Materia Medica ; (24): 242-249, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008331

RESUMEN

To control the risks of powder caking and capsule shell embrittlement of Guizhi Fuling Capsules, a predictive model for hygroscopicity of contents in Guizhi Fuling Capsules was built. A total of 90 batches of samples, including raw materials, intermediate powders and capsules, were collected during the manufacturing of Guizhi Fuling Capsules. According to the production sequence, 47 batches were used as the calibration set, and the properties of raw materials and the four intermediate powders were comprehensively characterized by the physical fingerprint. Then, the partial least squares(PLS) model was developed with the content hygroscopicity as the response variable. The variable importance in projection(VIP), variance inflation factor(VIF) and regression coefficients were used to screen out potential critical material attributes(pCMAs). As a result, five pCMAs from 54 physical parameters were screened out. Furthermore, different models were built by different combinations of pCMAs, and their predictive robustness of 43 batches was evaluated on the basis of the validation set. Finally, the tap density(D_c) of wet granules obtained from wet granulation and the angle of repose(α) of raw materials were identified as the critical material attributes(CMAs) affecting the hygroscopicity of the contents of Guizhi Fuling Capsules. The prediction model established with the two CMAs as independent variables had an average relative prediction error of 2.68% for samples in the validation set, indicating a good accuracy of prediction. This paper proved the feasibility of predictive modeling toward the control of critical quality attributes of Chinese medicine oral solid dosage(OSD). The combination of the continuous quality improvement, the industrial big data and the process modeling technique paved the way for the intelligent manufacturing of Chinese medicine oral solid preparations.


Asunto(s)
Cápsulas , Composición de Medicamentos , Medicamentos Herbarios Chinos/química , Polvos , Humectabilidad
16.
China Journal of Chinese Materia Medica ; (24): 233-241, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008330

RESUMEN

Lonicerae Japonicae Flos and Artemisiae Annuae Herba(LA or Jinqing) alcohol precipitation has various process parameters and complex process mechanism, and is one of the key units for manufacturing Reduning Injection. In order to identify the critical process parameters(CPPs) affecting the weight of the extract produced from the alcohol precipitation process, 259 batches of historical production data from 2017 to 2018 were collected, with a total of 829 318 data points. These data showed characteristics of large data, such as a large data volume, a low value density, and diverse sources. The data cleaning and feature extraction were first performed, and 48 feature variables were selected. The original data points were reduced to 9 936. Then, a combination of Pearson correlation analysis and grey correlation analysis were used to screen out 15 potential critical process parameters(pCPPs). After that, the partial least squares(PLS) was used in prediction of the weight of the extract, proving that the performance of predictive model based on 15 pCMAs is equivalent to that of predictive model based on 48 feature variables. The variable importance in projection(VIP) index was used to identify 9 CPPs, including 2 alcohol precipitation supernatant volume parameters, 4 initial extract weight parameters and 3 added alcohol volume parameters. As a result, the number of data points was 1 863, accounting for 0.28% of the original data. The big data analysis approach from a holistic point of view can effectively increase the value density of the original data. The critical process parameters obtained can help to accurately describe the quality transfer mechanism of the Jinqing alcohol precipitation process.


Asunto(s)
Alcoholes , Macrodatos , Medicamentos Herbarios Chinos/química , Solventes , Tecnología Farmacéutica
17.
China Journal of Chinese Materia Medica ; (24): 221-232, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008329

RESUMEN

Along with the striding of the Chinese medicine(CM) manufacturing toward the Industry 4.0, some digital factories have accumulated lightweight industrial big data, which become part of the enterprise assets. These digital assets possess the possibility of solving the problems within the CM production system, like the Sigma gap and the poverty of manufacturing knowledge. From the holistic perspective, a three-tiered architecture of CM industrial big data is put forward, and it consists of the data integration layer, the data analysis layer and the application scenarios layer. In data integration layer, sensing of CM critical quality attributes is the key technology for big data collection. In data analysis and mining layer, the self-developed iTCM algorithm library and model library are introduced to facilitate the implementation of the model lifecycle methodologies, including process model development, model validation, model configuration and model maintenance. The CM quality transfer structure is closely related with the connection mode of multiple production units. The system modeling technologies, such as the partition-integration modeling method, the expanding modeling method and path modeling method, are key to mapping the structure of real manufacturing system. It is pointed out that advance modeling approaches that combine the first-principles driven and data driven technologies are promising in the future. At last, real-world applications of CM industrial big data in manufacturing of injections, oral solid dosages, and formula particles are presented. It is shown that the industrial big data can help process diagnosis, quality forming mechanism interpretations, real time release testing method development and intelligent product formulation design. As renewable resources, the CM industrial big data enable the manufacturing knowledge accumulation and product quality improvement, laying the foundation of intelligent manufacturing.


Asunto(s)
Algoritmos , Macrodatos , Comercio , Minería de Datos , Medicina Tradicional China , Control de Calidad , Tecnología Farmacéutica
18.
China Journal of Chinese Materia Medica ; (24): 1225-1231, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008560

RESUMEN

Since the outbreak of 2019-nCoV, the epidemic has developed rapidly and the situation is grim. LANCET figured out that the 2019-nCoV is closely related to "cytokine storm". "Cytokine storm" is an excessive immune response of the body to external stimuli such as viruses and bacteria. As the virus attacking the body, it stimulates the secretion of a large number of inflammatory factors: interleukin(IL), interferon(IFN), C-X-C motif chemokine(CXCL) and so on, which lead to cytokine cascade reaction. With the exudation of inflammatory factors, cytokines increase abnormally in tissues and organs, interfering with the immune system, causing excessive immune response of the body, resulting in diffuse damage of lung cells, pulmonary fibrosis, and multiple organ damage, even death. Arachidonic acid(AA) metabolic pathway is principally used to synthesize inflammatory cytokines, such as monocyte chemotactic protein 1(MCP-1), tumor necrosis factor(TNF), IL, IFN, etc., which is closely related to the occurrence, development and regression of inflammation. Therefore, the inhibition of AA metabolism pathway is benefit for inhibiting the release of inflammatory factors in the body and alleviating the "cytokine storm". Based on the pharmacophore models of the targets on AA metabolic pathway, the traditional Chinese medicine database 2009(TCMD 2009) was screened. The potential herbs were ranked by the number of hit molecules, which were scored by pharmacophore fit value. In the end, we obtained the potential active prescriptions on "cytokine storm" according to the potential herbs in the "National novel coronavirus pneumonia diagnosis and treatment plan(trial version sixth)". The results showed that the hit components with the inhibitory effect on AA were magnolignan Ⅰ, lonicerin and physcion-8-O-β-D-glucopy-ranoside, which mostly extracted from Magnoliae Officinalis Cortex, Zingiberis Rhizoma Recens, Lonicerae Japonicae Flos, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Scutellariae Radix, Gardeniae Fructus, Ginseng Radix et Rhizoma, Arctii Fructus, Dryopteridis Crassirhizomatis Rhizoma, Paeoniaeradix Rubra, Dioscoreae Rhizoma. Finally the anti-2019-nCoV prescriptions were analyzed to obtain the potential active prescriptions on AA metabolic pathway, Huoxiang Zhengqi Capsules, Jinhua Qinggan Granules, Lianhua Qingwen Capsules, Qingfei Paidu Decoction, Xuebijing Injection, Reduning Injection and Tanreqing Injection were found that may prevent 2019-nCoV via regulate cytokines. This study intends to provide reference for clinical use of traditional Chinese medicine to resist new coronavirus.


Asunto(s)
Humanos , Ácido Araquidónico/metabolismo , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Redes y Vías Metabólicas , Pandemias , Neumonía Viral/inmunología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
19.
China Journal of Chinese Materia Medica ; (24): 1219-1224, 2020.
Artículo en Chino | WPRIM | ID: wpr-1008559

RESUMEN

With the rapid outbreak of COVID-19, traditional Chinese medicine(TCM) has been playing an active role against the epidemic. However, the screening of TCM is limited by the development cycle and laboratory conditions, which greatly limits the screening speed. This study established optimization docking models and virtual screening to discovery potential active herbs for the prevention and treatment of the novel coronavirus based on molecular docking technology. The crystal structures of 3 CL protease(Mpro) and papain-like protease(PLP) were obtained from PDB database and homologous modeling respectively, and were used to conduct virtual screening of TCMD 2009 database by CDOCKER program. The ingredients scored in the top 100 were selected respectively, and the candidate herbs were ranked by the numbers of hit molecules. Based on Mpro inhibitors screening, 12 322 potential active components were obtained, and the representative active components included aster pentapeptide A, ligustrazine, salvianolic acid B, etc., and Zingiberis Rhizoma Recens, Asteris Radix et Rhizoma, Notoginseng Radix et Rhizoma, Chuanxiong Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Zingiberis Rhizoma, Dianthi Herba, Rhei Radix et Rhizoma, Cistanches Herba were obtained. While 11 294 potential active ingredients were obtained by PLP inhibitor screening, representative active ingredients included gingerketophenol, ginkgol alcohol, ferulic acid, etc., and Codonopsis Radix, Notopterygii Rhizoma et Radix, Zingiberis Rhizoma Recens, Ginkgo Semen, Chuanxiong Rhizoma, Trichosanthis Fructus, Paeoniae Radix Alba, Psoraleae Fructus, Sophorae Flavescentis Radix, Notoginseng Radix et Rhizoma, Angelicae Sinensis Radix were chosen. By combining the diagnosis and treatment scheme of Hunan province's and angiotensin converting enzyme 2(ACE2) inhibitors screening from literature, present study also discussed the rational application of candidate herbs to this epidemic situation. Trichosanthis Fructus obtained by PLP inhibitors screening and Fritillaria verticillata obtained by ACE2 inhibitors screening were parts of the Sangbei Zhisou Powder and Xiaoxianxiong Decoction, which might be applicable to the syndromes of cough and dyspnea. Rhei Radix et Rhizoma screened by Mpro and Trichosanthis Fructus screened by PLP were contained in Maxing Shigan Decoction and Xuanbai Chengqi Decoction, and could be applied to the syndromes of epidemic virus blocking lung. Mori Folium, Lonicerae Japonicae Flos and Forsythiae Fructus obtained by ACE2 inhibitors screening were included in the Sangju Decoction and Yinqiaosan, which might be applicable to the syndromes of warm pathogen attacking lung and cough and dyspnea. The results of this study are intended to provide a reference for the further development of traditional Chinese medicine to deal with the new epidemic.


Asunto(s)
Humanos , Enzima Convertidora de Angiotensina 2 , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Pandemias , Peptidil-Dipeptidasa A , Neumonía Viral/tratamiento farmacológico , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
20.
China Journal of Chinese Materia Medica ; (24): 3245-3250, 2020.
Artículo en Chino | WPRIM | ID: wpr-828451

RESUMEN

The quality marker(Q-marker) of traditional Chinese medicine(TCM) is a new concept of TCM quality control proposed in recent years. It is a hot issue in the research of modern Chinese medicine. The TCM efficacy is a high-level summary of the TCM therapeutic effect under the guidance of TCM theory. On this basis, it is of considerable significance to explore the TCM efficacy marker for the TCM modernization. However, the traditional research strategy based on the single herb and decoction piece in macro TCM level, or the drug research strategy based on the biological effect of the targets, is quite different from the characteristics of multiple components of TCM, as well as the weak and low-selective effect of Chinese medicine ingredients on targets. Therefore, how to select representative ingredients to characterize the TCM overall efficacy is a problematic point in establishing TCM efficacy markers. In this paper, the concept and method of Q-marker were introduced into the study of Chinese medicine efficacy. The research method for systematic TCM was used to systematically discuss the connotation of TCM efficacy markers, the principles of discovery and determination, common research ideas and techniques by taking the representative research results as an example. This study provides new ideas for the research and discovery of TCM efficacy markers.


Asunto(s)
Biomarcadores , Medicamentos Herbarios Chinos , Medicina Tradicional China , Control de Calidad , Proyectos de Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA