Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Annals of Occupational and Environmental Medicine ; : 49-49, 2014.
Artículo en Inglés | WPRIM | ID: wpr-193141

RESUMEN

We report 2 cases of hepatotoxicity in cleanroom workers due to high retained chloroform air concentrations. The women, aged 34 and 41 years, who had been working in a medical endoscopic device manufacturer as cleanroom workers for approximately 40-45 days suffered severe liver damage. Two measured time-weighted averages of the chloroform concentration in the air in the cleanroom were 82.74 and 64.24 ppm, which are more than 6 times the legal occupational exposure limit in Korea. Only 7% of the cleanroom air was newly introduced from outside. The clinical courses of these cases and workplace inspection, led us to conclude that both cases of hepatotoxicity were caused by chloroform exposure.


Asunto(s)
Femenino , Humanos , Cloroformo , Enfermedad Hepática Inducida por Sustancias y Drogas , Corea (Geográfico) , Hígado , Exposición Profesional
2.
Annals of Occupational and Environmental Medicine ; : 22-2013.
Artículo en Inglés | WPRIM | ID: wpr-84431

RESUMEN

BACKGROUND: Primary tracheal tumors occur infrequently, accounting for less than 0.1% of all tumors. Adenoid cystic carcinoma (ACC) is the second most common type of malignancy of the trachea after squamous cell carcinoma (SCC). Little has been reported on the risk factors for tracheal ACC. The purpose of this study is to describe a case of tracheal ACC in a patient who had been exposed to rubber fumes, and to review the relationship between tracheal ACC and rubber fumes. CASE REPORT: A 48-year-old man who had been experiencing aggravation of dyspnea for several months was diagnosed as having ACC of the trachea on the basis of a pathologic examination of a biopsy specimen obtained via laser microscopy-guided resection. The patient had been exposed to rubber fumes for 10 years at a tire manufacturing factory where he worked until ACC was diagnosed. His job involved preheating and changing rubber molds during the curing process. CONCLUSION: ACC of both the trachea and the salivary glands show very similar patterns with regard to histopathology and epidemiology and are therefore assumed to have a common etiology. Rubber manufacturing is an occupational risk factor for the development of salivary gland tumors. Further, rubber fumes have been reported to be mutagenic. The exposure level to rubber fumes during the curing process at the patient's workplace was estimated to be close to or higher than British Occupational Exposure Limits. Therefore, tracheal ACC in this case might have been influenced by occupational exposure to rubber fumes.


Asunto(s)
Humanos , Persona de Mediana Edad , Tonsila Faríngea , Biopsia , Carcinoma Adenoide Quístico , Carcinoma de Células Escamosas , Disnea , Epidemiología , Hongos , Exposición Profesional , Factores de Riesgo , Goma , Glándulas Salivales , Tráquea
3.
Annals of Occupational and Environmental Medicine ; : 21-2013.
Artículo en Inglés | WPRIM | ID: wpr-100581

RESUMEN

OBJECTIVES: The purpose of this study was to evaluate the exposure to arsenic in preventive maintenance (PM) engineers in a semiconductor industry by detecting speciated inorganic arsenic metabolites in the urine. METHODS: The exposed group included 8 PM engineers from the clean process area and 13 PM engineers from the ion implantation process area; the non-exposed group consisted of 14 office workers from another company who were not occupationally exposed to arsenic. A spot urine specimen was collected from each participant for the detection and measurement of speciated inorganic arsenic metabolites. Metabolites were separated by high performance liquid chromatography-inductively coupled plasma spectrometry-mass spectrometry. RESULTS: Urinary arsenic metabolite concentrations were 1.73 g/L, 0.76 g/L, 3.45 g/L, 43.65 g/L, and 51.32 g/L for trivalent arsenic (As3+), pentavalent arsenic (As5+), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and total inorganic arsenic metabolites (As3+ + As5+ + MMA + DMA), respectively, in clean process PM engineers. In ion implantation process PM engineers, the concentrations were 1.74 g/L, 0.39 g/L, 3.08 g/L, 23.17 g/L, 28.92 g/L for As3+, As5+, MMA, DMA, and total inorganic arsenic metabolites, respectively. Levels of urinary As3+, As5+, MMA, and total inorganic arsenic metabolites in clean process PM engineers were significantly higher than that in the non-exposed group. Urinary As3+ and As5+ levels in ion implantation process PM engineers were significantly higher than that in non-exposed group. CONCLUSION: Levels of urinary arsenic metabolites in PM engineers from the clean process and ion implantation process areas were higher than that in office workers. For a complete assessment of arsenic exposure in the semiconductor industry, further studies are needed.


Asunto(s)
Arsénico , Ácido Cacodílico , Ocupaciones , Plantas , Plasma , Semiconductores , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA