Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Acta Pharmaceutica Sinica ; (12): 162-171, 2017.
Artículo en Chino | WPRIM | ID: wpr-779835

RESUMEN

Bupleuri Radix is one of the most frequently used herbal medicines in China with a 2000-year medicinal history. However, the use of Bupleuri Radix is very confused. Twenty-five species and eight varieties of Bupleurum have been used as Bupleuri Radix in different regions of China. It is very difficult to identify these Bupleurum species using traditional morphological method. In order to establish a fast and effective method to identify these Bupleurum species, we collected 168 Bupleurum medicinal plants from 14 populations of 9 provinces, and amplified their ITS sequences. 168 ITS sequences with a full length of 600-606 bp were obtained. DNAMAN analyzing results showed that 86 variable sites were present in these sequences and 19 haplotypes (TH1-TH19) were determined. After calculating K2P distance and analyzing an NJ tree, we established a molecular identification method based on ITS sequence. Using this method,52 samples of Bupleuri Radix were identified successfully. Furthermore, we tested saikosaponin a, c, d contents in these Bupleuri Radix by HPLC and analyzed the results by ANOVA and LSD T test to evaluate the quality of Bupleuri Radix. This method is significant for effective identification of Bupleurum medicinal plants, and quality control of Bupleuri Radix in the market.

2.
Acta Pharmaceutica Sinica ; (12): 318-326, 2017.
Artículo en Chino | WPRIM | ID: wpr-779596

RESUMEN

Licorice is one of the most common herbs in traditional Chinese medicine, and classified as top grade in Shen Nong Ben Cao Jing. There are three different original plants of licorice stipulated in Chinese Pharmacopeia, Glycyrrhiza uralensis Fisch., Glycyrrhiza glabra L., and Glycyrrhiza inflata Bat. However, previous investigation showed that the pharmacodynamic effects of the three licorices were quite different. It is very difficult to identify them by the classical identification methods. In order to establish a fast and effective identification method, we collected 240 licorice plants from 21 populations of 7 provinces, and amplified their ITS and psbA-trnH sequences. ITS sequences with a full length of 616 bp and psbA-trnH sequences with a full length of 389 bp were obtained separately. Using DNAMAN to analyze these sequences, 4 variable sites were found in ITS sequences and 2 ITS haplotypes were determined, and 3 variable sites were found in psbA-trnH sequences and 4 psbA-trnH haplotypes were determined. With the combination analysis of ITS and psbA-trnH sequences, the molecular identification method of original licorice was established. Using this method, 40 samples of licorice slices collected from 4 main herbal material markets in China were identified successfully. Furthermore, the contents of 2 triterpenes, 18α-glycyrrhizic acid and 18β-glycyrrhizic acid, and 4 flavonoids, liquiritin, isoliquiritin, liquiritigenin, and isoliquiritigenin in these licorice pieces were examined by HPLC and the results were analyzed using SPSS 21.0. This study provides a new method in identification of licorice, which may serve as a guideline for quality control of licorice slices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA