Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
China Pharmacy ; (12): 1216-1222, 2023.
Artículo en Chino | WPRIM | ID: wpr-973622

RESUMEN

OBJECTIVE To explore the regulatory effects of baicalin on the proliferation and migration of human periodontal ligament stem cells (hPDLSCs) induced by lipopolysaccharide (LPS) and Janus protein tyrosine kinase 2 (JAK2)/signal transduction and transcription activator 3 (STAT3) signaling pathways. METHODS hPDLSCs were divided into control group, LPS group, different concentration baicalin groups (0.1, 1 and 10 mg/L). ELISA method and CCK-8 assay were used to determine the contents of cell inflammatory factors [interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α)] and cell viability, so as to screen the optimal concentration of baicalin for follow-up pathway validation experiments. The cells were then divided into control group, LPS group, optimal baicalin concentration group and inhibitor group (10 μg/mL LPS+1 mg/L baicalin +3 μmol/L JAK2/STAT3 pathway inhibitor AG490). After treated for 24 h, the proliferation rate of hPDLSCs, apoptosis rate, migration rate, invasion cell number, mRNA and protein expressions of Cyclin D1 and caspase-3, the expression of JAK2/STAT3 pathway-related proteins were all detected. RESULTS According to cell inflammatory factors and cell viability, 1 mg/L was selected as the optimal concentration of baicalin. Compared with control group, cell proliferation rate, migration rate, invasion cell number, Cyclin D1 mRNA and protein expression were significantly decreased in LPS group, while cell apoptosis rate, caspase-3 mRNA and protein expression, p-JAK2 and p-STAT3 protein expression were significantly increased (P<0.05). After treated with 1 mg/L baicalin, the above indexes were reversed significantly (P<0.05). The improvement of above indexes in the inhibitor group was more obvious (P<0.05). CONCLUSIONS Baicalin can promote the proliferation, migration and invasion of LPS-induced hPDLSCs and inhibit their apoptosis and inflammation by blocking the JAK2/STAT3 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA