Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of the Korean Neurological Association ; : 171-185, 1991.
Artículo en Coreano | WPRIM | ID: wpr-23854

RESUMEN

An effect of D-phenylalanine on the pain inhibitory mechanism of prolonged electrical stimulation of the peripheral nerve was studied in decerebrate cats and spinal cats. The response of spinal neurons was elicited either by electrical stimulation of the ipsilateral common peroneal nerve and tibial nerve. The single-unit activity of motor neurons which represent the flexion reflex was recorded from a filament of ventral rootlet divided from either the L7, S1 or S2 ventral root, and activity of dorsal horns cells was recorded with a microelectrode at the lumbosacral cord The conditioning stimuli which provocate the pain inhibitory mechanism of the common peroneal or tibial nerve was applied with repetitive, low frequency (2Hz), at a suprathreshold intensity for C fiber, for 30-45 minutes. The results of the experiment are summarized as follows: 1. Applying conditioning stimuli produced a powerful inhibition of the responses which was provocated by noxious stimuli in either the decerebrate or the spinal cat without any statistical difference, and this effect can be observed for 15 minutes after the cessation of the conditioning stlmuli 2. This response was reversed completely by systemic injection of a specific opiate antagonist, naloxone. It suggests that the conditioning stimulus of the peripheral nerve can produce the endogenous opiate related pain inhibitory effect as the spinal mechanism. 3. The conditioning stimuli can produce the analgesic effect by means of supression of the activity of the dorsal horn cell which was related to the pain response in the decerebrate cat. The same result could be observed in flexion reflex. 4. D-phenylalanine, a putative inhibitor of carboxypeptidase which degradates the endogenous opiate-enkephalin, was studied in this experiment under the hypothesis that D-phenylalanine will emphasize or prolongate the action of enkephalin. But, intravenously injected D-phenylalanine did not potentiate the inhibitory effect of the conditioning stimuli of the peripheral nerve. From the above result, it is speculated that the electrical stimulation of the peripheral nerve is directly mediated by an endogenous opiate related analgesia, and the site of the analgesic action resides mainly in spinal cord level. But these data could not support the gypothesis that antinociceptive effect of D-phenylalanine results frm the potentiation of endogenously released enkephalin.


Asunto(s)
Animales , Gatos , Analgesia , Estimulación Eléctrica , Encefalinas , Cuernos , Microelectrodos , Neuronas Motoras , Naloxona , Fibras Nerviosas Amielínicas , Neuronas , Nervios Periféricos , Nervio Peroneo , Células del Asta Posterior , Reflejo , Médula Espinal , Raíces Nerviosas Espinales , Nervio Tibial
2.
Journal of the Korean Neurological Association ; : 186-202, 1991.
Artículo en Coreano | WPRIM | ID: wpr-23853

RESUMEN

Transcutaneous electrical nerve stimulation (TENS), acupuncture-needling, and electroacu! Puncture are useful non-ablative methods in medical practice for relief of acute and chronic r pain These procedures appear to work by causing an increased discharge in afferent nerve fibers which in turn modifies the transmission of impulses in pain pathways. The present study was performed to evaluate the analgesic effects of peripheral nerve stimulation with different stimulatory parameters in decerebrated cats and spinalized cats. And we studied the effects of naloxone, a specific opiate antagonist, on analgesia produced by 50 Hz, C intensity conditioning stimulation. The electrical response of.spinal neurons was elicited either by electrical stimulation of the ipsilateral common peroneal nerve or tibial nerve, and then the single unit activity of the dorsal horn cell was recorded with a carbon filament-filled glass microelectrode at the lumbosacral spinal cord. The conditioning stimuli which provoke the pain inhibitory mechanism were applied to the cornmon peroneal nerve or tibial nerve with a relatively high frequency (25, 50, 200Hz) for 15, 30, and 60 seconds at suprathreshold intensity for A delta or C fiber. The results of the experiment are summarized as follows: 1. Peripheral conditioning stimulation at C strength showed larger analgesic effects than those produced by stimulation at A delta strength. And analgesic effects produced by conditioning stimulation for 30sec were greater than those produced by stimulation for 15sec, but showed no statistically significant difference from those produced by stimulation for 60 sec. 2. Analgesic effects produced by 50Hz conditioning stimulation were greater than thoseproduced by 25Hz stimulation. But 200Hz stimulation showed a lesser analgesic effect than 50 or 25Hz conditioning stimulation. 3. The analgesic effect produced by 50Hz conditioning stimulation was only slightly affected by naloxone, a specific opiate antagonist, indicating that involvement of an endogenous opiate system was minimal. 4. The analgesic effect produced by conditioning stimulation in decerebrated cats was nearly the same as in spinal cats suggesting that the neural circuitry responsible for the analgesic action seems to reside mostly within the spinal cord. From the above results, it is concluded that 1) frequency of stimulation is important for an efficient analgesia, i.e., stimulation with excessively high frequency decreases the analgesic effect, 2) the analgesic effect produced by high frequency conditioning stimulation may be minimally mediated by an endogenous opiate system, and 3) the site of analgesic action resides mainly in the spinal cord.


Asunto(s)
Animales , Gatos , Analgesia , Carbono , Estimulación Eléctrica , Vidrio , Microelectrodos , Naloxona , Fibras Nerviosas , Fibras Nerviosas Amielínicas , Neuronas , Nervios Periféricos , Nervio Peroneo , Células del Asta Posterior , Punciones , Médula Espinal , Nervio Tibial , Estimulación Eléctrica Transcutánea del Nervio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA