Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Traumatology ; (6): 229-237, 2018.
Artículo en Inglés | WPRIM | ID: wpr-691006

RESUMEN

<p><b>PURPOSE</b>Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG).</p><p><b>METHODS</b>We utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs).</p><p><b>RESULTS</b>SMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis.</p><p><b>CONCLUSION</b>SMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.</p>


Asunto(s)
Humanos , Apoptosis , Proliferación Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Fisiología , Laminina , Genética , MicroARNs , Fisiología , Simulación de Ingravidez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA