Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biotechnology ; (12): 292-303, 2024.
Artículo en Chino | WPRIM | ID: wpr-1008096

RESUMEN

Innovation is an important way to promote economic development and social progress. Recent years have seen rapid development of biological sciences. In response to social demands and the needs for developing an innovative country, fostering innovative talents in the field of biosciences has become a significant initiative supported by national policies and the needs from talent market. Taking the innovative talent training mode implemented by Zhejiang Normal University in the field of biological sciences as an example, this paper comprehensively introduces several key aspects of the mode. This includes establishing a mentorship system as the foundation, carrying out curriculum reform through project competitions and practical platforms, and promoting synergy among industry, academia, and research in talent training. This training mode has achieved positive results in practice, promoting the training of outstanding innovative talents in biological science majors, and may facilitate the reform of talent training in similar majors.


Asunto(s)
Humanos , Disciplinas de las Ciencias Biológicas , Industrias , Políticas , Universidades
2.
Chinese Journal of Biotechnology ; (12): 122-136, 2024.
Artículo en Chino | WPRIM | ID: wpr-1008084

RESUMEN

Excavating the quantitative trait locus (QTL) associated with rice cooking quality, analyzing candidate genes, and improving cooking quality-associated traits of rice varieties by genetic breeding can effectively improve the taste of rice. In this study, we used the indica rice HZ, the japonica rice Nekken2 and 120 recombinant inbred lines (RILs) populations constructed from them as experimental materials to measure the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) of rice at the maturity stage. We combined the high-density genetic map for QTL mapping. A total of 26 QTLs associated with rice cooking quality (1 QTL associated with GT, 13 QTLs associated with GC, and 12 QTLs associated with AC) were detected, among which the highest likelihood of odd (LOD) value reached 30.24. The expression levels of candidate genes in the localization interval were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and it was found that the expression levels of six genes were significantly different from that in parents. It was speculated that the high expression of LOC_Os04g20270 and LOC_Os11g40100 may greatly increase the GC of rice, while the high expression of LOC_Os01g04920 and LOC_Os02g17500 and the low expression of LOC_Os03g02650 and LOC_Os05g25840 may reduce the AC. The results lay a molecular foundation for the cultivation of new high-quality rice varieties, and provide important genetic resources for revealing the molecular regulation mechanism of rice cooking quality.


Asunto(s)
Sitios de Carácter Cuantitativo , Oryza/genética , Fitomejoramiento , Culinaria , Estudios de Asociación Genética
3.
Chinese Journal of Biotechnology ; (12): 399-424, 2023.
Artículo en Chino | WPRIM | ID: wpr-970382

RESUMEN

The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields. Firstly, this article introduces the generation, working mechanism and advantages of CRISPR-Cas9 technology; secondly, it reviews the applications of CRISPR-Cas9 technology in gene knockout, gene knock-in, gene regulation and genome in breeding and domestication of important food crops such as rice, wheat, maize, soybean and potato. Finally, the article summarizes the current problems and challenges encountered by CRISPR-Cas9 technology and prospects future development and application of CRISPR-Cas9 technology.


Asunto(s)
Edición Génica , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Productos Agrícolas/genética , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA