Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 18-22, 2014.
Artículo en Inglés | WPRIM | ID: wpr-251367

RESUMEN

In the present study, we examined the effect of oxygen glucose deprivation (OGD) post-conditioning (PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase (LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h (O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70 (HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was (0.44±0.08)% and (0.76±0.10)%, and that of Bax expression was (0.51±0.05)% and (0.39±0.04)%, and that of HSP70 was (0.42±0.031)% and (0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was (28.96±3.03)% and (37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group (P<0.05). These findings suggest that PostC inhibited OGD-induced neuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70.


Asunto(s)
Animales , Ratas , Apoptosis , Western Blotting , Hipoxia de la Célula , Supervivencia Celular , Células Cultivadas , Corteza Cerebral , Biología Celular , Embriología , Citometría de Flujo , Glucosa , Farmacología , Proteínas HSP70 de Choque Térmico , Metabolismo , Poscondicionamiento Isquémico , Métodos , Neuronas , Biología Celular , Metabolismo , Oxígeno , Farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , Metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión , Proteína X Asociada a bcl-2 , Metabolismo
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 18-22, 2014.
Artículo en Inglés | WPRIM | ID: wpr-636504

RESUMEN

In the present study, we examined the effect of oxygen glucose deprivation (OGD) post-conditioning (PostC) on neural cell apoptosis in OGD-PostC model and the protective effect on primary cortical neurons against OGD injury in vitro. Four-h OGD was induced by OGD by using a specialized and humidified chamber. To initiate OGD, culture medium was replaced with de-oxygenated and glucose-free extracellular solution-Locke's medium. After OGD treatment for 4 h, cells were then allowed to recover for 6 h or 20 h. Then lactate dehydrogenase (LDH) release assay, Western blotting and flow cytometry were used to detect cell death, protein levels and apoptotic cells, respectively. For the PostC treatment, three cycles of 15-min OGD, followed by 15 min normal cultivation, were applied immediately after injurious 4-h OGD. Cells were then allowed to recover for 6 h or 20 h, and cell death was assessed by LDH release assay. Apoptotic cells were flow cytometrically evaluated after 4-h OGD, followed by re-oxygenation for 20 h (O4/R20). In addition, Western blotting was used to examine the expression of heat-shock protein 70 (HSP70), Bcl-2 and Bax. The ratio of Bcl-2 expression was (0.44±0.08)% and (0.76±0.10)%, and that of Bax expression was (0.51±0.05)% and (0.39±0.04)%, and that of HSP70 was (0.42±0.031)% and (0.72±0.045)% respectively in OGD group and PostC group. After O4/R6, the rate of neuron death in PostC group and OGD groups was (28.96±3.03)% and (37.02±4.47)%, respectively. Therefore, the PostC treatment could up-regulate the expression of HSP70 and Bcl-2, but down-regulate Bax expression. As compared with OGD group, OGD-induced neuron death and apoptosis were significantly decreased in PostC group (P<0.05). These findings suggest that PostC inhibited OGD-induced neuron death. This neuro-protective effect is likely achieved by anti-apoptotic mechanisms and is associated with over-expression of HSP70.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA