Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Medical Journal ; (24): 1439-1446, 2016.
Artículo en Inglés | WPRIM | ID: wpr-290056

RESUMEN

<p><b>BACKGROUND</b>Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated.</p><p><b>METHODS</b>BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay.</p><p><b>RESULTS</b>BASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration.</p><p><b>CONCLUSIONS</b>Downregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer.</p>


Asunto(s)
Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis , Genética , Fisiología , Proteínas de Unión a Calmodulina , Genética , Metabolismo , Ciclo Celular , Genética , Fisiología , Línea Celular Tumoral , Movimiento Celular , Genética , Fisiología , Proliferación Celular , Genética , Fisiología , Proteínas del Citoesqueleto , Genética , Metabolismo , Regulación Neoplásica de la Expresión Génica , Genética , Fisiología , Proteínas de la Membrana , Genética , Metabolismo , Ratones Desnudos , Proteínas del Tejido Nervioso , Genética , Metabolismo , Proteínas Represoras , Genética , Metabolismo , Neoplasias de la Tiroides , Metabolismo , Patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA