RESUMEN
Septic cardiomyopathy (SCM) has a high incidence and complex pathogenesis, which can significantly increase the mortality of sepsis patients. NOD-like receptor protein 3 (NLRP3) inflammatory corpuscles play an important role in the pathogenesis of SCM. Mitochondrial dysfunction in cardiomyocytes is also one of the important pathogenesis of SCM. Activation of NLRP3 inflammatory corpuscles is closely related to mitochondrial dysfunction. The study of interaction mechanism between the two is helpful to find a new therapeutic scheme for SCM. This article reviews the interaction between NLRP3 inflammatory corpuscles and mitochondrial dysfunction in the pathogenesis of SCM, as well as the related mechanisms of traditional Chinese medicine (TCM) prevention and treatment of SCM, providing theoretical reference for further exploring therapeutic targets for SCM.
RESUMEN
Notch signaling pathway is a highly conserved signaling pathway in the process of evolution. It is composed of three parts: Notch receptor, ligand and effector molecules responsible for intracellular signal transduction. It plays an important role in cell proliferation, differentiation, development, migration, apoptosis and other processes, and has a regulatory effect on tissue homeostasis and homeostasis. Mitochondria are the sites of oxidative metabolism in eukaryotes, where sugars, fats and proteins are finally oxidized to release energy. In recent years, the regulation of Notch signaling pathway on mitochondrial energy metabolism has attracted more and more attention. A large number of data have shown that Notch signaling pathway has a significant effect on mitochondrial energy metabolism, but the relationship between Notch signaling pathway and mitochondrial energy metabolism needs to be specifically and systematically discussed. In this paper, the relationship between Notch signaling pathway and mitochondrial energy metabolism is reviewed, in order to improve the understanding of them and provide new ideas for the treatment of related diseases.