RESUMEN
Objective@#To evaluate the impact of surgical simulation training using a three-dimensional (3D)-printed model of tetralogy of Fallot (TOF) on surgical skill development. @*Materials and Methods@#A life-size congenital heart disease model was printed using a Stratasys Object500 Connex2 printer from preoperative electrocardiography-gated CT scans of a 6-month-old patient with TOF with complex pulmonary stenosis.Eleven cardiothoracic surgeons independently evaluated the suitability of four 3D-printed models using composite Tango 27, 40, 50, and 60 in terms of palpation, resistance, extensibility, gap, cut-through ability, and reusability of. Among these, Tango 27 was selected as the final model. Six attendees (two junior cardiothoracic surgery residents, two senior residents, and two clinical fellows) independently performed simulation surgeries three times each. Surgical proficiency was evaluated by an experienced cardiothoracic surgeon on a 1–10 scale for each of the 10 surgical procedures. The times required for each surgical procedure were also measured. @*Results@#In the simulation surgeries, six surgeons required a median of 34.4 (range 32.5–43.5) and 21.4 (17.9–192.7) minutes to apply the ventricular septal defect (VSD) and right ventricular outflow tract (RVOT) patches, respectively, on their first simulation surgery. These times had significantly reduced to 17.3 (16.2–29.5) and 13.6 (10.3–30.0) minutes, respectively, in the third simulation surgery (p = 0.03 and p = 0.01, respectively). The decreases in the median patch appliance time among the six surgeons were 16.2 (range 13.6–17.7) and 8.0 (1.8–170.3) minutes for the VSD and RVOT patches, respectively. Summing the scores for the 10 procedures showed that the attendees scored an average of 28.58 ± 7.89 points on the first simulation surgery and improved their average score to 67.33 ± 15.10 on the third simulation surgery (p = 0.008). @*Conclusion@#Inexperienced cardiothoracic surgeons improved their performance in terms of surgical proficiency and operation time during the experience of three simulation surgeries using a 3D-printed TOF model using Tango 27 composite.
RESUMEN
Objective@#To evaluate the impact of surgical simulation training using a three-dimensional (3D)-printed model of tetralogy of Fallot (TOF) on surgical skill development. @*Materials and Methods@#A life-size congenital heart disease model was printed using a Stratasys Object500 Connex2 printer from preoperative electrocardiography-gated CT scans of a 6-month-old patient with TOF with complex pulmonary stenosis.Eleven cardiothoracic surgeons independently evaluated the suitability of four 3D-printed models using composite Tango 27, 40, 50, and 60 in terms of palpation, resistance, extensibility, gap, cut-through ability, and reusability of. Among these, Tango 27 was selected as the final model. Six attendees (two junior cardiothoracic surgery residents, two senior residents, and two clinical fellows) independently performed simulation surgeries three times each. Surgical proficiency was evaluated by an experienced cardiothoracic surgeon on a 1–10 scale for each of the 10 surgical procedures. The times required for each surgical procedure were also measured. @*Results@#In the simulation surgeries, six surgeons required a median of 34.4 (range 32.5–43.5) and 21.4 (17.9–192.7) minutes to apply the ventricular septal defect (VSD) and right ventricular outflow tract (RVOT) patches, respectively, on their first simulation surgery. These times had significantly reduced to 17.3 (16.2–29.5) and 13.6 (10.3–30.0) minutes, respectively, in the third simulation surgery (p = 0.03 and p = 0.01, respectively). The decreases in the median patch appliance time among the six surgeons were 16.2 (range 13.6–17.7) and 8.0 (1.8–170.3) minutes for the VSD and RVOT patches, respectively. Summing the scores for the 10 procedures showed that the attendees scored an average of 28.58 ± 7.89 points on the first simulation surgery and improved their average score to 67.33 ± 15.10 on the third simulation surgery (p = 0.008). @*Conclusion@#Inexperienced cardiothoracic surgeons improved their performance in terms of surgical proficiency and operation time during the experience of three simulation surgeries using a 3D-printed TOF model using Tango 27 composite.
RESUMEN
PURPOSE: Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome with many causes, including Kawasaki disease (KD). The purpose of this study was to identify the laboratory tests needed to easily differentiate KD with HLH from incomplete KD alone. METHODS: We performed a retrospective study on patients diagnosed with incomplete KD and incomplete KD with HLH (HLH-KD) between January 2012 and March 2015. We compared 8 secondary HLH patients who were first diagnosed with incomplete KD with all 247 incomplete KD diagnosed patients during the study period. The complete blood count, erythrocyte sedimentation rate, platelet count, and serum total protein, albumin, triglyceride, C-reactive protein, N-terminal pro-brain natriuretic peptide (NT-proBNP), and ferritin levels were compared. Clinical characteristics and echocardiography findings were also compared between the 2 groups. RESULTS: The total duration of fever was longer in the HLH-KD group than in the KD group. White blood cell and platelet counts were higher in the KD group. Alanine aminotransferase, ferritin, and coronary artery diameter were increased in the HLH-KD group compared with those in the KD group. The median of NT-proBNP was significantly higher in the HLH-KD group than in the KD group at 889.0 (interquartile range [IQR], 384.5–1792.0) pg/mL vs. 233.0 (IQR, 107.0–544.0) pg/mL. CONCLUSION: The NT-proBNP level may be helpful in distinguishing incomplete KD from KD with HLH. The NT-proBNP level should be determined in KD patients with prolonged fever, in addition to the white blood cell count, platelet count, and ferritin level, to evaluate secondary HLH.