Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Añadir filtros








Intervalo de año
1.
J. venom. anim. toxins incl. trop. dis ; 30: e20230098, 2024. tab, graf, mapas, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1569330

RESUMEN

Background: Members of the genus Cupiennius Simon, 1891 are categorized as wandering spiders and are part of the family Trechaleidae. The genomics and proteomics of Cupiennius spiders from North America remain uncharacterized. The present study explores for the first time molecular data from the endemic species Cupiennius chiapanensis Medina, 2006, and also presents new data for Cupiennius salei (Keyserling, 1878), both collected in southern Mexico. Methods: In total, 88 Cupiennius specimens were collected from southern Mexico and morphologically identified. DNA was extracted and the mitochondrial COI fragment was amplified. COI sequences were analyzed, and a phylogenetic tree was inferred for species from the Americas. Genetic diversity was analyzed using haplotype networks and gene distances. Venom was obtained from C. chiapanensis and C. salei by electrostimulation. The venom was separated by HPLC, visualized using SDS-PAGE, and quantified for use in toxicity bioassays in mice and insects. Results: Analysis of COI sequences from C. chiapanensis showed 94% identity with C. salei, while C. salei exhibited 94-97% identity with sequences from Central and South American conspecifics. The venom from C. chiapanensis exhibited toxic activity against crickets. Venoms from C. chiapanensis and C. salei caused death in Anastrepha obliqua flies. Analysis of venom fractions from C. salei and C. chiapanensis revealed molecular masses of a similar size as some previously reported toxins and neurotoxic components. We determined the amino acid sequences of ChiaTx1 and ChiaTx2, toxins that are reported here for the first time and which showed toxicity against mice and insects. Conclusion: Our work is the first to report COI-based DNA barcoding sequences from southern Mexican Cupiennius spiders. Compounds with toxic activity were identified in venom from both species.(AU)


Asunto(s)
Animales , Filogenia , Arañas/clasificación , Arañas/genética , Venenos de Araña/toxicidad , Complejo IV de Transporte de Electrones/análisis , Código de Barras del ADN Taxonómico/veterinaria , México
2.
J. venom. anim. toxins incl. trop. dis ; 24: 17, 2018. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-954858

RESUMEN

Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. Conclusion The venom contains more than 83 distinct components, among which are peptides that affect the function of human Na+-channels and K+-channels. Two new complete amino acid sequences were determined: one an arthropod toxin, the other a peptide of unknown function.(AU)


Asunto(s)
Animales , Venenos de Escorpión/aislamiento & purificación , Venenos de Escorpión/toxicidad , Electrofisiología/métodos , Espectrometría de Masas/métodos , Secuencia de Aminoácidos , Proteínas de Artrópodos/fisiología
3.
J. venom. anim. toxins incl. trop. dis ; 24: 1-8, 2018. graf, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484752

RESUMEN

Background Centruroides hirsutipalpus, of the family Buthidae, is a scorpion endemic to the Western Pacific region of Mexico. Although medically important, its venom has not yet been studied. Therefore, this communication aims to identify their venom components and possible functions. Methods Fingerprinting mass analysis of the soluble venom from this scorpion was achieved by high-performance liquid chromatography and electrospray mass spectrometry. Furthermore, the soluble venom and its toxic effects were evaluated extensively via electrophysiological assays in HEK cells expressing human voltage-gated Na+ channels (hNav 1.1 to Nav1.6), CHO cells expressing hNav 1.7, potassium channel hERG 1 (Ether-à-go-go-related-gene) and the human K+-channel hKv1.1. Results The separation of soluble venom produced 60 fractions from which 83 distinct components were identified. The molecular mass distribution of these components varies from 340 to 21,120 Da. Most of the peptides have a molecular weight between 7001 and 8000 Da (46% components), a range that usually corresponds to peptides known to affect Na+ channels. Peptides with molecular masses from 3000 to 5000 Da (28% of the components) were identified within the range corresponding to K+-channel blocking toxins. Two peptides were obtained in pure format and completely sequenced: one with 29 amino acids, showing sequence similarity to an "orphan peptide" of C. limpidus, and the other with 65 amino acid residues shown to be an arthropod toxin (lethal to crustaceans and toxic to crickets). The electrophysiological results of the whole soluble venom show a beta type modification of the currents of channels Nav1.1, Nav1.2 and Nav1.6. The main effect observed in channels hERG and hKv 1.1 was a reduction of the currents. ..


Asunto(s)
Animales , Electrofisiología , Escorpiones , Dermatoglifia del ADN , Venenos de Escorpión/análisis
4.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484670

RESUMEN

The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.


Asunto(s)
Animales , Antivenenos/biosíntesis , Neurotoxinas/clasificación , Neurotoxinas/genética , Serpientes
5.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954790

RESUMEN

Background The cysteine-rich neurotoxins from elapid venoms are primarily responsible for human and animal envenomation; however, their low concentration in the venom may hamper the production of efficient elapid antivenoms. Therefore, the aim of the present study was to produce fully active elapid neurotoxic immunogens for elapid antivenom production. Method Cysteine-rich neurotoxins showed recombinant expression in two strains of E. coli, and were purified using affinity chromatography and reverse-phase HPLC (rpHPLC). Results The cDNA of the four disulfide-bridged peptide neurotoxin Mlat1 was cloned into a modified expression vector, pQE30, which was transfected into two different E. coli strains. The recombinant toxin (HisrMlat1) was found only in inclusion bodies in M15 strain cells, and in both inclusion bodies and cytoplasm in Origami strain cells. The HisrMlat1 from inclusion bodies from M15 cells was solubilized using guanidine hydrochloride, and then purified by rpHPLC. It showed various contiguous fractions having the same molecular mass, indicating that HisrMlat1 was oxidized after cell extraction forming different misfolded disulfide bridge arrangements without biological activity. In vitro folding conditions of the misfolded HisrMlat1 generated a biologically active HisrMlat1. On the other hand, the HisrMlat1 from the cytoplasm from Origami cells was already soluble, and then purified by HPLC. It showed a single fraction with neurotoxic activity; so, no folding steps were needed. The in vitro folded HisrMlat1 from M15 cells and the cytoplasmic soluble HisrMlat1from Origami cells were indistinguishable in their structure and neurotoxicity. Rabbit polyclonal antibodies raised up against biologically active HisrMlat1 recognized the native Mlat1 (nMlat1) from the whole venom of M. laticorallis. In addition, HisrMlat1 was recognized by horse polyclonal antibodies obtained from the immunization of elapid species from sub-Saharan Africa. Conclusion HisrMlat1 shows increased biological activities compared to the native peptide, and may be used as an immunizing agent in combination with other toxic components such phospholipases type A2 for elapid antivenom production.(AU)


Asunto(s)
Pliegue de Proteína , Elapidae , Venenos Elapídicos , Anticuerpos , Neurotoxinas
6.
Medwave ; 13(8)sept. 2013. ilus, tab, graf
Artículo en Español | LILACS | ID: lil-716662

RESUMEN

Contexto: Latinoamérica se encuentra en una transición demográfica y epidemiológica, proceso que representa un aumento de las enfermedades crónico-degenerativas. La osteoporosis y las fracturas por fragilidad se perfilan como una de las causas de carga por enfermedad de mayor impacto en el sector salud. Objetivo: ofrecer un panorama actualizado sobre las tendencias de la epidemiología de la osteoporosis y las fracturas por fragilidad, su impacto económico y los recursos con que actualmente cuenta nuestra región para el diagnóstico, tratamiento oportuno y prevención. Método: panel de expertos. Conclusión: se observó que la información epidemiológica y económica en nuestra región es escasa y fragmentada. Por lo tanto es deseable recolectar datos sobre la calidad de vida en la osteoporosis y fracturas por fragilidad, además de enfatizar la prevención como herramienta para disminuir estas lesiones.


Background. The Latin American region is undergoing a demographic and epidemiological transition, which is leading to an increase in chronic and degenerative diseases. Osteoporosis (OP) and fragility fractures (FF) are emerging as main causes of disease burden with great impact on health institutions. Purpose. This review article provides an updated overview of trends in the epidemiology and economic impact of OP and FF, as well as in diagnosis and available treatments in Latin America, including calcium, vitamin D and prevention programs. Methods. Expert panel. Conclusions. According to this review, there is a lack of epidemiological and economic information in the region. It is desirable to obtain information regarding quality of life in OP and FF as well as to highlight prevention as a tool to reduce FF.


Asunto(s)
Femenino , Fracturas Óseas/epidemiología , Osteoporosis/epidemiología , Dinámica Poblacional , Densitometría/estadística & datos numéricos , Equipo para Diagnóstico/provisión & distribución , Equipos y Suministros/provisión & distribución , Fracturas de Cadera/epidemiología , Fracturas de la Columna Vertebral/epidemiología , Osteoporosis/prevención & control , Insumos Farmacéuticos , Política de Salud , Recursos en Salud/provisión & distribución
7.
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1484524

RESUMEN

The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions The venom of these scorpions from different.


Asunto(s)
Animales , Péptidos/análisis , Proteómica , Venenos , Análisis Espectral/métodos , Escorpiones/clasificación
8.
Artículo en Inglés | LILACS | ID: lil-686621

RESUMEN

Backgound: The venom of the Cuban scorpion Rhopalurus junceus is poorly study from the point of view of their components at molecular level and the functions associated. The purpose of this article was to conduct a proteomic analysis of venom components from scorpions collected in different geographical areas of the country. Results: Venom from the blue scorpion, as it is called, was collected separately from specimens of five distinct Cuban towns (Moa, La Poa, Limonar, El Chote and Farallones) of the Nipe-Sagua-Baracoa mountain massif and fractionated by high performance liquid chromatography (HPLC); the molecular masses of each fraction were ascertained by mass spectrometry analysis. At least 153 different molecular mass components were identified among the five samples analyzed. Molecular masses varied from 466 to 19755 Da. Scorpion HPLC profiles differed among these different geographical locations and the predominant molecular masses of their components. The most evident differences are in the relative concentration of the venom components. The most abundant components presented molecular weights around 4 kDa, known to be K+-channel specific peptides, and 7 kDa, known to be Na+-channel specific peptides, but with small molecular weight differences. Approximately 30 peptides found in venom samples from the different geographical areas are identical, supporting the idea that they all probably belong to the same species, with some interpopulational variations. Differences were also found in the presence of phospholipase, found in venoms from the Poa area (molecular weights on the order of 14 to 19 kDa). The only ubiquitous enzyme identified in the venoms from all five localities studied (hyaluronidase) presented the same 45 kD molecular mass, identified by gel electrophoresis analysis. Conclusions: The venom of these scorpions from different geographical areas seem to be simila, and are rich in peptides that have of the same molecular masses of the peptides...


Asunto(s)
Animales , Péptidos , Fosfolipasas , Proteómica , Venenos de Escorpión/aislamiento & purificación , Cuba/epidemiología , Espectrometría de Masas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA