Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Applied Physiology ; (6): 137-139, 2005.
Artículo en Chino | WPRIM | ID: wpr-287077

RESUMEN

<p><b>AIM</b>By genechip cDNA microarray, the genes expressions of Stearoyl-coenzyme A desaturase (Scd-2) and brain fatty acid-binding protein (B-FABP) were studied in the central nervous system (CNS) of the mice to discuss the mechanism of exercise-induced fatigue.</p><p><b>METHODS</b>Building the model of fatigued animal and using the genechip cDNA microarray, the genes expressions were analyzed between the control group and fatigue group mice.</p><p><b>RESULTS</b>The genes expression of Scd-2 and B-FABP were obvious different in the brain of fatigued group mice than of control group.</p><p><b>CONCLUSION</b>Exercise-induced nerve center fatigue is correlated with genes expressions of lipid metabolism.</p>


Asunto(s)
Animales , Masculino , Ratones , Secuencia de Bases , Encéfalo , Metabolismo , Fatiga , Genética , Metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Genética , Metabolismo , Expresión Génica , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso , Genética , Metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estearoil-CoA Desaturasa , Genética , Metabolismo
2.
Chinese Journal of Applied Physiology ; (6): 363-366, 2003.
Artículo en Chino | WPRIM | ID: wpr-333751

RESUMEN

<p><b>AIM</b>To observe possible mechanism that endurance training can enhance anti-fatigue capability, and that blood redistribution by analyzing some biochemical indexes of endurance-trained mice after exhaustive exercise.</p><p><b>METHODS</b>The model was set up by exhaustive exercise. The indexes include the activity of SOD, CAT and POD and the MDA content in serum and the NO content in liver, muscle, heart and serum.</p><p><b>RESULTS</b>After exhaustive exercise, the SOD activity in serum and the NO content in liver significantly decrease (P < 0.05 - 0.01), and the activity of POD and CAT, the NO content in serum and muscle significantly increase (P < 0.05 - 0.01), but the rest insignificantly change in non-endurance (P > 0.05). In endurance group, the CAT activity in serum are significantly higher than in non-endurance (P < 0.05), and the NO content in serum is significantly lower than in non-endurance (P < 0.01), but the rest are insignificantly different between two groups (P > 0.05). After 24h restoration, in non-endurance group, the CAT activity and the MDA content in serum and the NO content in liver significantly rise (P < 0.05-0.01), and the NO content in muscle and serum significantly decrease (P < 0.05), but the rest insignificantly change (P > 0.05). In endurance group, the SOD activity in serum and the NO content in liver, serum and heart significantly rise (P < 0.05), and the CAT activity in serum significantly decreases (P < 0.05), but the rest insignificantly change (P > 0.05). In endurance group, the CAT activity and the MDA content in serum are significantly lower than in non-endurance (P < 0.05), but the NO content in heart is higher than in non-endurance (P < 0.05). The rest are insignificantly different between two groups (P > 0.05).</p><p><b>CONCLUSION</b>The possible mechanism, which endurance training can enhance anti-fatigue capability, is relative to enhance the capability to resume balance. Blood redistribution are possibly relative to change to the NO content.</p>


Asunto(s)
Animales , Masculino , Ratones , Catalasa , Sangre , Hígado , Química , Malondialdehído , Sangre , Músculos , Química , Óxido Nítrico , Sangre , Peroxidasa , Sangre , Condicionamiento Físico Animal , Fisiología , Resistencia Física , Fisiología , Superóxido Dismutasa , Sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA