Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
China Pharmacy ; (12): 1042-1047, 2023.
Artículo en Chino | WPRIM | ID: wpr-972944

RESUMEN

OBJECTIVE To study the osteoprotective effects and possible mechanism of total saponins of Chaenomeles speciosa on rheumatoid arthritis (RA) model mice, and to provide reference for further development of anti-RA drugs. METHODS Seventy male DBA/1 mice were randomly divided into normal group, model group, low-dose and high-dose groups of C. speciose total saponins (60, 240 mg/kg), Tripterygium wilfordii polyglycoside tablets group (positive control, 30 mg/kg), with 14 mice in each group. In addition to the normal group, the other groups of mice were induced by glucose-6-phosphate isomerase mixed polypeptide to prepare RA model. The body weight, rear toes thickness and arthritis scores of each group were recorded; the synovial inflammation, bone and cartilage destruction of ankle joint tissues were observed by hematoxylin-eosin staining, tartrate- resistant acid phosphatase staining and safranin O-fast green staining; the contents of interleukin-6 (IL-6) in serum and tumor necrosis factor α (TNF-α), IL-4 and IL-10 in ankle joint tissues were detected by ELISA; the expression levels of receptor activator of nuclear factor-κB ligand (RANKL), receptor activator of nuclear factor-κB (RANK), osteoprotegerin (OPG), tumor necrosis factor receptor-associated protein 6 (TRAF6) and nuclear factor of activated T cells 1 (NFATC1) protein in ankle joint tissues were detected by Western blot assay. RESULTS At the end of administration, compared with normal group, the body mass of mice in the model group was significantly reduced (P<0.05), and the arthritis score and the thickness of the left and right rear toes were significantly increased (P<0.05); the ankle joint tissues of mice in the model group showed significant synovial proliferation and inflammatory infiltration, the number of osteoclasts increased significantly and significant destruction of cartilage tissue. The content of IL-6 in serum, the content of TNF-α, the protein expression levels of RANKL, RANK, TRAF6 and NFATC1 in the ankle joint tissues were increased significantly (P<0.05), while the contents of IL- 4 and IL-10, the protein expression level of OPG in the ankle joint tissues were decreased significantly (P<0.05). Compared with model group, above pathomorphological changes and the content/level of indicators of mice in each administration group were significantly improved (P<0.05). CONCLUSIONS Total saponins of C. speciosa may exert osteoprotective effects on RA model mice, the mechanism of which may be associated with reducing the contents of IL-6 and TNF-α, increasing the contents of IL-4 and IL-10, inhibiting the activation of RANKL/RANK/OPG signal pathway, thus inhibiting the proliferation of osteoclasts and promoting the repair of cartilage and bone tissue.

2.
China Pharmacy ; (12): 892-896, 2023.
Artículo en Chino | WPRIM | ID: wpr-969592

RESUMEN

Rheumatoid arthritis (RA) is a systemic chronic auto-inflammatory disease, characterized by infiltration of inflammatory cells, pannus formation, articular cartilage destruction, and bone matrix destruction. Therefore, improving articular cartilage destruction has an important impact on the treatment of RA. Chinese medicine has a good application effect in improving cartilage destruction of RA due to its characteristics of multiple components, multiple targets, high activity and low side effects. Based on this, the author reviewed relevant literature to summarize the relevant research and mechanism of Chinese medicine and its active components in improving RA cartilage destruction. The results showed that Chinese medicine and its active components can improve RA cartilage destruction by regulating inflammatory factors, phosphatidylinositol 3-kinase/protein kinase B, Wnt/β- catenin, nuclear factor-κB, mitogen-activated protein kinase, Janus kinase 2/signal transduction and activator of transcription 3/ vascular endothelial growth factor, microRNAs, fibroblastic synovial cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA