Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-39, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011440

RESUMEN

By consulting the ancient Chinese herbal books, medical books and formularies of the past dynasties, and combining with modern research data, this paper makes a systematic textual research on the name, origin, place of origin, traditional quality evaluation, harvesting and processing of Selaginellae Herba, so as to provide a basis for the development and utilization of the relevant famous classical formulas. According to the textual research, Juanbai is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Baozu, Qiugu, Jiaoshi and Jiusi Huanhuncao. The origin of Selaginellae Herba in the ancient herbal books was Selaginella tamariscina in all dynasties. Since the Republic of China, S. pulvinata has been gradually used as another origin of Selaginellae Herba. In ancient times, the producing area of S. tamariscina was mainly in Shandong, Hebei, Henan, Shaanxi, Jiangsu and Sichuan, etc. Nowadays, it is produced all over the country. S. pulvinata is mainly produced in Guangxi, Fujian, Sichuan, Guizhou, Yunnan, Hebei and so on. Since the recent times, it is concluded that the quality of the green color, complete and unbroken is good. Before the Qing dynasty, it was recorded that the harvesting time of Selaginellae Herba was generally from April to July, and it was expanded to all year round since the Qing dynasty. After harvesting, remove the sediment(sand and mud), cut off the fibrous roots and dry in the shade or in the sun. The processing methods in all dynasties were mainly carbonizing by stir-frying and stir-bake to brown, and some ancient books contained the processing method of brine boiling, which was rarely used in modern times. Based on the results, it is recommended that S. tamariscina should be used as the base material of Selaginellae Herba. Because of more impurities, it should be fully purified to ensure the cleanliness of the herb, and the processing method can be based on the prescription requirements, if the processing requirements are not specified, the raw products can be used, charcoal products is recommended for use as an hemostatic.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 20-30, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011439

RESUMEN

By reviewing the ancient and modern literature, the name, origin, scientific name evolution, place of origin, quality, harvesting, processing, efficacy and toxicity of Asteris Radix et Rhizoma(ARR) were systematically sorted out, so as to provide reference for the development and utilization of the relevant famous classical formulas. According to textual research, ARR was first contained in Shennong Bencaojing, all generations are Ziwan for its proper name, and there are still aliases such as Ziyuan, Ziqian and Xiaobianer. Its mainstream origin in successive generations was Aster tataricus, and there are also Ligularia fischeri and others in local area of use. The medicinal parts of ARR are root and rhizome, but in modern times, the rhizome is mostly used for propagation and cultivation, so some of ARR medicinal materials only have the root without the rhizome. The earliest recorded ancient origin of ARR was now Fangxian(Hubei), Zhengding and Handan(Heibei), then the range of production areas gradually expanded, the mainstream production areas from the Song dynasty to the Ming and Qing dynasties included Hebei, Jiangsu, Anhui, Henan and other places, since modern times, two major producing areas have been formed in Anguo, Hebei province and Bozhou, Anhui province. From the quality evaluation, it is clear that from ancient times, flexible roots and purple color are the best. The ancient harvesting was mainly in lunar February or March, and then dried in the shade, and the modern harvesting is mostly in spring and autumn, and the roots are braided into pigtails and then dried in the sun or dried in the sun after 1-2 d. The ancient and modern processing method of ARR are basically the same, mainly honey processing, there are still methods of frying, steaming, vinegar sizzling, etc. Based on the results, it is recommended that the dried roots and rhizomes of A. tataricus should be used in clinical and the development of related famous classical formulas, and those whose original formulas specify the processing requirements can be processed according to the relevant requirements, while whose processing requirements are not specified should be used in the form of raw products.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 11-19, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011438

RESUMEN

Through consulting the ancient herbal books and modern literature, this paper has carried out the textual research on the name, origin, place of origin, harvesting and processing, and other contents of Bruceae Fructus, combed its ancient and modern medicinal history, so as to provide reference for the development of famous classical formulas containing Bruceae Fructus. Through the herbal textual research, It can be verified that, since the Qing dynasty, Bruceae Fructus has been recorded in the materia medica, most of the materia medica in previous dynasties took Bruceae Fructus as its proper name, and Laoyadan, Kushenzi and Yadanzi as the aliases. The main origin of Bruceae Fructus is Brucea javanica, its medicinal part is the fruit, which is harvested from August to October every year, the fruit can be harvested when it is ripe. Bruceae Fructus was first distributed in Fujian, Guangdong and Guangxi, and gradually expanded to the south of China with the change of time. The traditional processing method of Bruceae Fructus is mainly to remove the shell and kernel, and remove the oil by frosting. The 2020 edition of Chinese Pharmacopoeia stipulates that its processing method is to remove the shell and impurities. Based on the research results, it is suggested that the dried mature fruit of B. javanica should be selected for the development of famous classical formulas containing this herb, and the raw products can be used if the original formula does not specify the processing requirements.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-10, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011437

RESUMEN

In order to provide a reference basis for the development of relevant compound preparations, this article takes a comprehensive analysis of the usage and dosage of famous classical formulas in Han dynasty from various perspectives, and gives corresponding countermeasures on this basis. Through the comprehensive analysis of the classification and statistics of Zhongjing's medication characteristics, decoction methods, administration and dosage, and combining conversion methods of weights and measures by ancient medical practitioners, along with the dosage and administration of the listed Han dynasty famous classical formulas, it was found that the "Jiangxi method" served as a general guideline for administration according to Zhongjing's original text. This method allowed for flexible dosing based on the conversion of the ancient measurements to modern equivalents[13.8 g per Liang(两)], ensuring the safe and effective medication of these formulas. After combing, it is found that although the dosage of single medicine is large in famous classical formulas from Han dynasty, the administration is flexible. The crude drug amount per administration serves as the foundational dose, with the frequency of administration adjusted flexibly according to the condition. This dosing approach becomes the key for the rational development of compound formulations of famous classical formulas. Based on the conclusions of the study, it is recommended that when developing compound formulations of famous classical formulas in Han dynasty, the original administration method and dosage should be respected. The original crude drug amount per administration should be considered as the daily foundational dose, with the frequency of administration described within a range(1 to N times per day, where N is the maximum number of administrations as per the original text). The specific frequency of administration can be adjusted flexibly by clinical practitioners based on the individual condition. This approach should also be adopted in toxicological studies, where the dosage per administration serves as the basis for toxicity research, and the toxicity profile at the maximum administration frequency should be observed, providing guidance on the clinical safety range. Corresponding drug labels should provide information within a range to indicate toxicological risk intervals.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 179-189, 2024.
Artículo en Chino | WPRIM | ID: wpr-1006569

RESUMEN

By consulting the ancient and modern literature, the textual research of Pharbitidis Semen has been conducted to clarify the name, origin, distribution of production areas, quality specification, harvesting, processing and so on, so as to provide reference for the development and utilization of the relevant famous classical formulas. Through textual research, it can be seen that Pharbitidis Semen was first published in Mingyi Bielu(《名医别录》), and all dynasties have taken Qianniuzi as the correct name. Based on the original research, the main source of Pharbitidis Semen used in previous dynasties is the dried mature seeds of Pharbitis nil, which is consistent in ancient and modern times. The white Pharbitidis Semen appearing in Compendium of Materia Medica(《本草纲目》) from Ming dynasty is similar to the present P. purpurea. It is produced all over the country, and the quality is better if the particles are full and free of impurities. In ancient times, the harvesting time was mostly in the September. Now it is autumn. The fruits are ripe and harvested, dried to remove impurities for standby. In ancient times, the processing methods of Pharbitidis Semen were mainly wine steaming, steaming and frying until half cooked and grinding the head and end. In modern times, they have been simplified to stir-frying method. The nature, taste, meridian tropism and their effects also change supplements with the deepening of practice. Before the Ming dynasty, they were all bitter, cold and toxic. In the Ming dynasty, there appeared the characteristics of pungent, hot and small poisonous. The efficacy has evolved from controlling low Qi, curing foot edema, removing wind toxin, and facilitating urination to facilitating water and defecation, eliminating phlegm and drinking, and eliminating accumulated insects. The main clinical contraindications are those with weak spleen and kidney, those with weak spleen and stomach, pregnant women, and should not be used with croton and croton cream. Based on the textual research, it is suggested that when developing the classic famous formula with Pharbitidis Semen as the main raw material in the future, it is clear that the source should be the dried mature seeds of Pharbitis nil(black product is its black-brown seeds, white product is its beige seeds). The processing requirements indicated in the original formula are all processed according to the requirements, and the raw product is recommended to be used as medicine if not specified.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 66-74, 2024.
Artículo en Chino | WPRIM | ID: wpr-1006556

RESUMEN

ObjectiveTo investigate the mechanism of Atractylodis Macrocephalae Rhizoma(AMR) in the treatment of slow-transmission constipation(STC) by observing the effects of AMR on short-chain fatty acids and intestinal barries in STC mice. MethodForty-eight male KM mice were randomly divided into blank group, model group, AMR low-, medium-, high-dose groups(2.5, 5, 10 g·kg-1) and mosapride group(2.5 mg·kg-1). Except for the blank group, all groups were gavaged with loperamide suspension(5 mg·kg-1) twice daily for 14 d to construct the STC mouse model. At the same time, each drug administration group was given the corresponding drug by gavage for consecutive 14 d, the blank and model groups were gavaged with equal volume of distilled water. The effects of the treatment of AMR on body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice were observed, the pathological changes of mouse colon were observed by hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining, the levels of gastrin(GAS) and motilin(MTL) in serum were detected by enzyme-linked immunosorbent assay(ELISA), gas chromatography-mass spectrometry(GC-MS) was used to detect the contents of short-chain fatty acids(SCFAs) in mouse feces, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) and Western blot were used to determine the mRNA and protein expression levels of zonula occludens-1(ZO-1), Occludin, and Claudin-1 in the colon of mice. ResultCompared with the blank group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in the model group were significantly decreased(P<0.05, P<0.01), the arrangement of colonic tissues was disordered, and the number of goblet cells was reduced, the levels of GAS and MTL in serum were significantly decreased(P<0.01), and the levels of SCFAs in the feces were on a decreasing trend, with the contents of acetic acid, propionic acid, butyric acid, isobutyric acid and valeric acid were significantly decreased(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly decreased(P<0.01). The above results suggested that STC mouse model was successfully constructed. Compared with the model group, the body mass, defecation frequency, fecal water content and intestinal propulsion rate of mice in AMP administration groups all increased significantly(P<0.05, P<0.01), the mucosal layer of the colonic tissues was structurally intact without obvious damage, and the number of goblet cells increased, serum levels of GAS and MTL were significantly increased(P<0.01), the contents of SCFAs in the feces were all on a rising trend, with the contents of acetic, propionic, butyric and isobutyric acids rising significantly(P<0.05, P<0.01), the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colonic tissues were significantly increased(P<0.05, P<0.01). ConclusionAMR is able to improve the constipation symptoms in STC mice, and its mechanism may be related to increasing the contents of SCFAs in the intestine as well as promoting the mRNA and protein expression levels of ZO-1, Occludin and Claudin-1 in the colon.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 89-99, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005257

RESUMEN

This article systematically analyzes the historical evolution of the origin, scientific name, medicinal parts, quality evaluation, harvesting and processing and other aspects of Tsaoko Fructus by consulting ancient materia medica, medical books, prescription books in the past dynasties and combining with the modern literature, so as to provide a basis for the development and utilization of famous classical formulas containing Tsaoko Fructus. According to the research, the name of Caoguo(草果) was first used in the Taiping Huimin Heji Jufang(《太平惠民和剂局方》) in the Northern Song dynasty, Tsaoko Fructus is the correct name of the herbal medicine in all dynasties, and there are also aliases such as Caokou, Doukou, Loukou, Laokou and Caodoukou. The mainstream source of Tsaoko Fructus used in the past dynasties is the dried mature fruit of Amomum tsaoko of Zingiberaceae, but Tsaoko Fructus was often used as a nickname for Amomi Fructus Rotundus or Alpiniae Katsumadai Semen during the Song dynasty. Bencao Pinhui Jingyao(《本草品汇精要》) in the Ming dynasty was the earliest materia medica that recorded Tsaoko Fructus as a separate medicinal herb in sections. Under the influence of early ancient books, there were some books that confused Tsaoko Fructus with other Zingiberaceae plants during the Qing dynasty, it was not until modern times that Tsaoko Fructus was distinguished from other plants. The origin of Tsaoko Fructus is Yunnan and Guangxi, and then gradually expanded to Guizhou and other places. Now Yunnan is the province with the largest planting area of Tsaoko Fructus, and has become the main producing area. Since modern times, it has been recorded in the literature that the quality of Tsaoko Fructus is mainly characterized by large, full, red-brown and strong in smell. According to ancient records, the harvest time of Tsaoko Fructus was in the eighth month of the lunar calendar, and they were mostly used for peeling or simmering. Currently, the harvest period of Tsaoko Fructus is October to November, and then sun-dried or dried after harvesting. The records of the properties and functional indications of Tsaoko Fructus are basically consistent with the ancient and modern documents, which is warm in nature, pungent in flavor, belonging to the spleen and stomach meridians, moderate in dryness and dampness, intercepting malaria and eliminating phlegm, used for internal resistance of cold and dampness, abdominal distension and pain, fullness and vomiting, malaria cold and fever, and plague fever. Based on the research results, it is suggested that A. tsaoko should be used as the medicinal base for the development of famous classical formulas containing Tsaoko Fructus, processing method can be according to the requirements of the prescription, and if the requirements of concoction are not indicated, it can be used in the form of raw products.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 77-88, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005256

RESUMEN

In order to provide basic information for the utilization and development of famous classical formulas containing Bletillae Rhizoma, this article systematically analyzes the historical evolution of the name, origin, harvesting and processing of Bletillae Rhizoma by reviewing the ancient materia medica, prescription books, medical books and modern literature. The research results showed that Baiji(白及) was the main name, some scholars took Baiji(白芨) as its main name, and there were many other names such as Baiji(白给), Baigen(白根), Baiji(白苙). The mainstream source of Bletillae Rhizoma was the tubers of Bletilla striata, and drying, large, white, solid, root-free and skin removed completely were the good quality standards. With the promotion of wild to cultivated medicinal materials, there were certain differences between their traits, and the quality evaluation indexes should be adjusted accordingly. The origin of records in the past dynasties was widely distributed, with Guizhou and Sichuan having high production and good quality in modern times. The harvesting period is mostly in spring and autumn, and harvested in autumn was better. The processing and processing technology is relatively simple, and it was used fresh or powdered in past dynasties, while it is mainly sliced for raw use in modern times. Based on the results, it is suggested that the tubers of Bletilla striata of Orchidaceae should be used in the famous classical formulas, and it should be uniformly written as Baiji(白及). And if the original formula indicates the requirement of processing, it should be operated according to the requirement, if the requirement of processing is not indicated, it can be used in raw form as medicine.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 67-76, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005255

RESUMEN

By consulting ancient and modern literature, the herbal textual research of Farfarae Flos has been conducted to verify the name, origin, producing area, quality evaluation, harvesting and processing methods, so as to provide reference for the development and utilization of the famous classical formulas containing Farfarae Flos. According to the research, the results showed that Farfarae Flos was first described as a medicinal material by the name of Kuandonghua in Shennong Bencaojing(《神农本草经》), and the name was used and justified by later generations. The main origin was the folwer buds of Tussilago farfara, in addition, the flower buds of Petasites japonicus were used as medicine in ancient times. The ancient harvesting time of Farfarae Flos was mostly in the twelfth month of the lunar calendar, and the modern harvesting time is in December or before the ground freeze when the flower buds have not been excavated. Hebei, Gansu, Shaanxi are the authentic producing areas with the good quality products. Since modern times, its quality is summarized as big, fat, purple-red color, no pedicel is better. Processing method from soaking with licorice water in the Northern and Southern dynasties to stir-frying with honey water followed by micro-fire in the Ming dynasty, and gradually evolved to the modern mainstream processing method of honey processing. Based on the research results, it is suggested that the dried flower buds of T. farfara, a Compositae plant, should be selected for the development of famous classical formulas containing Farfarae Flos, and the corresponding processed products should be selected according to the specific processing requirements of the formulas, and raw products are recommended for medicinal use without indicating processing requirements.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 55-66, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005254

RESUMEN

By consulting the ancient and moderm literature, this paper makes a textual research on the name, origin, quality evaluation, harvesting and processing of Olibanum, so as to provide a basis for the development of the famous classical formulas containing this medicinal material. According to the herbal textual research, the results showed that Olibanum was first described as a medicinal material by the name of Xunluxiang in Mingyi Bielu(《名医别录》), until Ruxiang had been used as the correct name since Bencao Shiyi(《本草拾遗》) in Tang dynasty. The main origin was Boswellia carterii from Burseraceae family. The mainly producing areas in ancient description were ancient India and Arabia, while the modern producing areas are Somalia, Ethiopia and the southern Arabian Peninsula. The medicinal part of Olibanum in ancient and modern times is the resin exuded from the bark, which has been mainly harvested in spring and summer. It is concluded that the better Olibanum has light yellow, granular, translucent, no impurities such as sand and bark, sticky powder and aromatic smell. There were many processing methods in ancient times, including cleansing(water flying, removing impurities), grinding(wine grinding, rush grinding), frying(stir-frying, rush frying, wine frying), degreasing, vinegar processing, decoction. In modern times, the main processing methods are simplified to cleansing, stir-frying and vinegar processing. Nowadays, the commonly used specifications include raw, fried and vinegar-processed products. Among the three specifications, raw products is the Olibanum after cleansing, fried products is a kind of Olibanum processed by frying method, vinegar-processed products is the processed products of pure frankincense mixed with vinegar. Based on the research results, it is recommended to select the resin exuded from the bark of B. carterii for the famous classical formulas such as Juanbitang containing Olibanum, processing method should be carried out in accordance with the processing requirements of the formulas, otherwise used the raw products if the formulas without clear processing requirements.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 43-52, 2024.
Artículo en Chino | WPRIM | ID: wpr-999159

RESUMEN

ObjectiveBased on the experience of traditional quality evaluation, the quality of Atractylodis Macrocephalae Rhizoma(AMR) with different production methods such as direct seeding, transplanting after seedling raising, topping and non-topping, and difference in growth years was compared. MethodVernier caliper was used to measure the trait data of AMR in different production methods. Paraffin sections of AMR with different production methods were made by saffron solid green staining, and the microstructure was observed. The contents of water-soluble and alcohol-soluble extracts in AMR with different production methods were determined according to the 2020 edition of Chinese Pharmacopoeia. The content of water-soluble total polysaccharides in AMR with different production methods was detected by sulfuric acid-anthrone method. Fiber analyzer was used to detect the content of fiber components in AMR with different production methods. The contents of monosaccharides, oligosaccharides and some secondary metabolites in AMR with different production methods were detected by ultra performance liquid chromatography(UPLC), and the differences of chemical components were compared by multivariate statistical analysis methods such as principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA). ResultIn terms of traits, the 3-year-old AMR with direct seeding and without topping was close to the high-quality AMR with "phoenix-head and crane-neck, strong sweetness and clear aroma" recorded in ancient materia medica, followed by the 3-year-old AMR with topping after transplanting, while the 2-year-old AMR with topping after transplanting with high market circulation rate was generally fat and strong with mild odor. In the microscopic aspect, the arrangement of xylem vessels and fiber bundles in the 3-year-old samples formed two obvious rings. Compared with the 2-year-old samples cultivated in Bozhou and Zhejiang, the 3-year-old samples without topping after transplanting had more wood fibers. In terms of chemical composition, the contents of 70% ethanol extract, fructose, glucose, sucrose, 1-kestose, atractylenolide Ⅰ, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and other components in 3-year-old AMR with direct seeding and without topping were significantly higher than those in the other three samples(P<0.05). The contents of cellulose, 70% ethanol extract, sucrose, atractylenolide Ⅰ, atractylone and other components in 3-year-old AMR with topping after transplanting were significantly higher than those in the 2-year-old AMR with high market circulation rate(P<0.05), while the contents of water-soluble extract and water-soluble total polysaccharides in 2-year-old samples with topping after transplanting were significantly higher than those in the 3-year-old AMR with topping after transplanting, direct seeding and without topping(P<0.05). ConclusionUnder the current mainstream production mode, too much manual intervention makes AMR heavily enriched in polysaccharides and increased the yield, but the accumulation of sweet substances, fragrant substances and fiber substances is insufficient, which affects its quality. The current quality standard of AMR has some shortcomings in guiding the high quality production of it, it is suggested to revise the quality standard of AMR, supplement the quantitative analysis of secondary metabolites, and strengthen the production of imitation wild AMR.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 31-42, 2024.
Artículo en Chino | WPRIM | ID: wpr-999158

RESUMEN

ObjectiveBased on the quality evaluation experience of "it is better to have a fragrant and strong aroma" summarized by materia medica of past dynasties, the chemical components of Sojae Semen Nigrum(SSN) and Sojae Semen Praeparatum(SSP) were systematically compared and analyzed, and the main fermentation products in different fermentation time were quantitatively analyzed, so as to clarify the transformation law of internal components in the processing process and provide scientific basis for the modern quality control of SSP. MethodUltra performance liquid chromatography-quadrupole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used for the structural identification of the chemical constituents of SSN and SSP, and with the aid of Progenesis QI v2.3 software, the negative ion mode was employed for principal component analysis(PCA) pattern recognition, and the data were analyzed with the aid of orthogonal partial least squares-discriminant analysis(OPLS-DA) for two-dimensional data to obtain S-plot, and components with |P|>0.1 were selected as the differential constituents. The contents of isoflavonoids in SSP during fermentation was determined by UPLC, and the samples were taken every 8 h in the pre-fermentation period and every 2 d in the post-fermentation period, and the dynamic changes of isoflavonoid contents in different fermentation stages were analyzed. The contents of amino acids and nucleosides in SSP and SSN from different fermentation stages were quantitatively analyzed by phenyl isothiocyanate(PITC) pre-column derivatization and high performance liquid chromatography(HPLC) gradient elution, and the contribution of flavor substances to the "delicious" taste of SSP was discussed by taste intensity value(TAV). ResultA total of 19 kinds of differential components were screened out, mainly soybean saponins and isoflavones, and their contents decreased significantly or even disappeared after fermentation. In the pre-fermentation process of SSP, glycoside bond hydrolysis mainly occurred, and isoflavone glycosides in SSN were degraded and converted into the corresponding aglycones, the content of flavor substances such as amino acids increased gradually. In the post-fermentation process, protein degradation mainly occurred, after 8 d of post-fermentation, the content of isoflavones was basically stable, while the total content of amino acids increased by 8-40 times on average. Different amino acids form the special flavor of SSP, such as the TAV of glutamate is always ahead of other flavor substances, and sweet substances such as alanine and valine have made relatively great contributions to SSP. ConclusionBased on the law of constituent transformation, combined with the traditional evaluation index of "fragrant and strong", it is difficult to control the fermentation degree of SSP by the existing standards in the 2020 edition of Chinese Pharmacopoeia. It is suggested that description of the characteristics of SSP be refined and changed to "fragrant, delicious and slightly sweet", and at the same time, the post-fermentation index compounds such as glutamic acid, alanine and valine should be added as the quality control indicators of SSP, so as to standardize the production process and improve the quality of SSP.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-30, 2024.
Artículo en Chino | WPRIM | ID: wpr-999157

RESUMEN

ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted cultivated Astragali Radix(CA) and wild-simulated Astragali Radix(WA) from the aspects of character, microstructure and chemical composition by modern technological means. MethodThe collected CA and WA were compared in characters and microscopic characteristics in cross section, and comparative analysis were performed on the contents of cellulose, extracts, carbohydrate, total flavonoids, total saponins, etc. Then ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer(UPLC-Q-TOF-MS) and desorption electrospray ionization mass spectrometry imaging(DESI-MSI) were used to comparatively analyze the secondary metabolites and their spatial distributions in the xylem and phloem of CA and WA. ResultIn terms of characters, the characters and sectional features of WA was consistent with the characteristics of high-quality Astragali Radix, while the CA was quite different from the traditional high-quality Astragali Radix. In terms of microscopy, the phellem layer of CA was thin, and the section fissures were mostly distributed through the cambium in a long strip shape without obvious growth ring characteristics. The cork layer of WA was thick, and the cracks in the section were distributed in the center of the xylem and the outer edge of the phloem in an irregular cavity shape. The cambium was tight without cracks, and had obvious characteristics of a growth ring. In terms of chemical composition, the contents of water-soluble extract, 80% ethanol extract and sucrose of CA was significantly higher than those of WA, while the contents of total saponins, lignin and hemicellulose were significantly lower than those of WA. And the contents of 100% ethanol extract, total polysaccharides and total flavonoids in both of them were generally similar, but slightly higher in WA. The contents of 2 kinds of monoacyl-substituted flavonoid glycosides in the xylem of WA was significantly higher than those of CA, while the contents of 2 kinds of flavonoid aglycones and one flavonoid glycoside were on the contrary. The contents of 7 saponins in phloem of WA were significantly higher than those of CA. ConclusionThere are significant differences between CA and WA in characters, microstructure and chemical components, in which CA has a fast growth rate and a short planting period, and the primary metabolites such as water-soluble extracts and sucrose are more enriched, which is the reason for its firm texture and sweetness being significantly higher than those of WA. However, the contents of lignin, hemicellulose and some secondary metabolites in WA are significantly higher than those in the CA, which are close to the traditional description of characters and quality. Based on the results of this study, it is suggested to strengthen the production of WA, improve the supply capacity of WA, and gradually upgrade the current standard. It is recommended to increase the contents of monoacyl-substituted flavonoid glycosides, total saponins and other indicators that can characterize different production methods, so as to guide the high-quality production of Astragali Radix.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-20, 2024.
Artículo en Chino | WPRIM | ID: wpr-999156

RESUMEN

By reviewing the research history on quality comparison between wild and cultivated Chinese crude drugs, this paper systematically combed the relevant research reports since the 1950s, and summarized and analyzed the results of existing comparative studies, and found that the existing comparative research on the quality of wild and cultivated Chinese crude drugs were mainly focused on several aspects, including characteristics, microstructures, chemical compositions, pharmacodynamic effects, and genetic diversity. Among these, comparative studies of chemical compositions have been the dominant approach, with a particular emphasis on comparing the contents of index components. However, research on pharmacodynamic effects remained relatively limited. Due to various factors such as sample quantity, sample origin, growth period and cultivation methods, the differences in quality between wild and cultivated Chinese crude drugs vary significantly. In general, most wild Chinese crude drugs exhibited higher quality than cultivated products, with significant differences in their characteristics. The contents and proportions of some chemical components underwent noticeable changes, particularly with a marked increase in the proportion of primary metabolites after cultivation. The quality of cultivated Chinese crude drugs is closely related to the cultivation practices employed. Chinese crude drugs produced through wild nurturing, simulated wild planting, ecological cultivation, and other similar methods demonstrate quality levels comparable to those of wild Chinese crude drugs. Based on the analysis results, it is recommended to explicitly specify the cultivation practices and cultivation period of cultivated Chinese crude drugs in comparative studies of the quality between wild and cultivated Chinese crude drugs. Multiple technical approaches, including characteristics, microscopy, non-targeted metabolomics combined with quantitative analysis of differential components, and bioefficacy evaluation, should be employed to comprehensively assess the quality disparities between wild and cultivated Chinese crude drugs. Moreover, research efforts should be intensified to investigate the changes in pharmacodynamic effects resulting from differences in plant cell wall composition, primary metabolites, and secondary metabolites, in order to guide the production of high-quality Chinese crude drugs.

15.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 75-87, 2023.
Artículo en Chino | WPRIM | ID: wpr-979452

RESUMEN

By reviewing the ancient and modern literature, the name, origin, medicinal parts and other aspects of Linderae Radix in famous classical formulas were systematically sorted out, so as to provide a basis for development of famous classical formulas containing this herb. Linderae Radix was first recorded in Bencao Shiyi in the Tang dynasty under name of Pangqi, and since Rihuazi Bencao of the Five dynasties, all generations of materia medica have used Wuyao as its proper name of the herb. The mainstream source of Linderae Radix used in the past dynasties is dried tuberous roots of Lindera aggregata contained in the 2020 edition of Chinese Pharmacopoeia. The origins of Linderae Radix recorded in the past dynasties are mainly Guangdong, Guangxi, Hunan, Zhejiang, Anhui and others, since the Song dynasty, Tiantai county in Zhejiang province has been regarded as the authentic producing place, in modern times, it is still the authentic place of origin. At harvesting, in ancient times, the harvesting time of the roots was mostly in August, while in modern times, Linderae Radix is mostly harvested in winter and spring or throughout the year, and is dried directly after harvesting or cut thin slices and dried in the place of production. At processing, Linderae Radix was processed by removing the peel and heart, wine roasting, vinegar roasting and other methods in ancient times, and in modern times, it is mostly used in raw form as medicine. In conclusion, it is suggested that the processing method of fresh slicing and drying in the place of origin in the 2020 edition of Chinese Pharmacopoeia should be adopted if Linderae Radix is involved in the development of famous classical formulas.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 62-74, 2023.
Artículo en Chino | WPRIM | ID: wpr-979451

RESUMEN

Through reviewing the ancient and modern literature, the name, origin, producing area, quality evaluation, harvesting and processing methods of Trichosanthis Fructus(TF) and Trichosanthis Radix(TR) in famous classical formulas were systematically sorted out following the chronological order. The results showed that there were many nicknames of TF and TR, and Gualou and Tianhuafen have become the mainstream names for its fruit and root, respectively. Both of them took Trichosanthes kirilowii as the mainstream base. TF and TR have been used as medicines in the Han dynasty, and since the North and South dynasties, Leigong Paozhilun had been clear that the effects of peels, seeds, stems, roots were different. TF was used as medicine with intact fruits, harvested after maturity from September to October, hung and dried in the shade, and its quality has been summarized in recent times as being best for those who are mature, large, thick and pliable peels, orange-yellow in color, and with sufficient sugary properties. In ancient times, the processing of TR was mostly crushed or shredded with the peels and seeds, or processing for pancakes and creams. TR was used as medicine with the roots, it is harvested from November to December, peeled and dried in the sun, and its quality was best when it was deep in the soil, large, white, powdery, firm and delicate with few muscles and veins, and it was considered to be toxic when it was born in briney land. Processing method of TR was to do powder into the medicine in the Tang dynasty, and gradually evolved into direct slicing use in the Ming and Qing dynasties. Since the modern era, the authentic producing areas of TF and TR were in the vicinity of Lingbao, Henan province, known as Anyang Huafen, and in modern times, there are well-known production areas such as Anguo, which produces Qihuafen, and Jinan, which produces Changqing Gualou. In the Song dynasty, there was a habit of substituting Trichosanthis Semen for the whole herb, which was later corrected by the materia medica in Ming dynasty. Based on the results, It is suggested that T. kirilowii be selected as the basal plant for the development of famous classical formulas involving TR and TF. In Qingjin Huatantang, Trichosanthis Semen is processed by stir-frying method, while TR and TF in other five formulas from the Catalogue of Ancient Famous Classical Formulas(The First Batch) were all used in raw form.

17.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 42-61, 2023.
Artículo en Chino | WPRIM | ID: wpr-979450

RESUMEN

To conduct textual research on the records of Chrysanthemi Flos in the ancient literature from the aspects of name, origin, species, scientific name, origin, harvesting, processing, quality and so on, and the modern literature was sorted out to clarify the relationship between the ancient and modern times, so as to provide a reference for the development of famous classical formulas containing Chrysanthemi Flos. Chrysanthemi Flos is an ornamental, edible and medicinal plant in China, it has many aliases, but it has been recorded in this materia medica under the name of Juhua, Ganju and Ganjuhua. Before the Tang dynasty, medicinal Chrysanthemi Flos mainly collected wild products, including yellow flowers and white flowers, of which the mainstream of yellow flowers was originally Dendranthema lavandulifolium and D. potentilloides, the mainstream of white flowers is D. vestitum and D. chanetii. The cultivation of medicinal Chrysanthemi Flos began in the Northern Song dynasty, and wild D. lavandulifolium, D. potentilloides, D. vestitum and D. chanetii were selected through long-term interspecies and intraspecies crossbreeding, which gradually formed the current cultivar D. morifolium. After chrysanthemums were introduced abroad, foreign scholars began to name chrysanthemums with Linnaeus's plant classification system. In 1792, Mathier named chrysanthemums as Chrysanthemum morifolium and continued to this day, and all the editions of Chinese Pharmacopoeia adopted this scientific name. In the Song dynasty, many local varieties such as Nanyangju, Dengzhouhuang and Dengzhoubai appeared. By the time of the Republic of China, five famous authentic varieties, namely Huaiju, Boju, Chuju, Gongju and Hangju, had been cultivated for medicinal purposes. Boju has been the best medicinal variety since the late Qing dynasty. Hangbaiju has been famous for its tea use, especially the best quality of Huju. Chuju has its own unique characteristics, and it is of good quality both for medicine and tea. Gongju has always been a good tea chrysanthemum. Chrysanthemums are traditionally harvested in September of the lunar calendar, but some of the new varieties cultivated nowadays are harvested earlier. The embryo chrysanthemum in Hangbaiju is a commodity type that collects unopened buds in advance. In ancient times, chrysanthemums were mainly dried in the shade, in modern times, drying methods include drying in the shade, drying in the oven and drying in the sun after steaming. At present, hot air drying is mostly used. In terms of processing, Chrysanthemi Flos was used raw products in ancient times, in modern times, it is still widely used, sometimes stir fried(including stir-fried charcoal). Due to different varieties, producing areas and processing methods, there are certain differences in the proportion of ingredients contained in chrysanthemum. Therefore, it is suggested that chrysanthemums with different varieties, origins and processing methods should be selected according to clinical indications in the development of famous classical formula preparations containing Chrysanthemi Flos.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-37, 2023.
Artículo en Chino | WPRIM | ID: wpr-973129

RESUMEN

Through the textual research and analysis of ancient and modern documents of Acanthopanacis Cortex(AC), this paper combed the variety, origin, harvesting, processing and ancient quality evaluation methods of AC, and clarified the historical context of the mixing of its common counterfeit product(Periplocae Cortex), in order to provide a basis for the development of famous classical formulas containing AC. AC was first published in Shennong Bencaojing with the name of Wujia, Wujiapi is the name rectification in all dynasties since Leigong Paozhilun. According to the description of inflorescence location and fruit morphology of Wujia in the materia medica, it is judged that the mainstream origin of AC used in previous dynasties was Acanthopanax gracilistylus. Periplocae Cortex was mixed with AC in the period of the Republic of China because it was in line with the "like Lycii Cortex, light, brittle and fragrant". The origin of Wujiapi recorded in past dynasties was concentrated in the middle and lower reaches of the Yangtze River, mainly in Hubei, Henan, Anhui and other places. Since modern times, the traditional quality evaluation of AC has been gradually summarized, with thick skin, white color and fragrant smell as the best. The traditional harvesting and processing of AC involved picking the stems in May and July of the lunar calendar, picking the roots in October, and drying in the shade. In modern times, the roots of AC are harvested, washed, peeled and dried in summer and autumn. In the past dynasties, there were rice wine processing, Euodiae Fructus boiling, ginger juice processing and other methods. In modern times, it is usually cut into thick slices after the cleansing. According to the research results, it is suggested that the root bark of A. gracilistylus should be selected as the origin of AC in famous classical formulas, which should be processed into the medicine according to the specific prescription requirements. In addition, it is suggested to restore the medicinal name of Periplocae Cortex as Yangtao, in order to reduce its chaotic influence on the medicinal use of AC.

19.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 13-25, 2023.
Artículo en Chino | WPRIM | ID: wpr-973128

RESUMEN

This article has systematically reviewed the name, origin, scientific name, producing area, quality evaluation, harvesting and processing methods of Polygonati Odorati Rhizoma(POR) by consulting the materia medica, medical books, prescription books and modern literature, in order to provide a reference for the development of famous classical formulas containing POR. Yuzhu was first recorded in the Shennong Bencaojing under the name of Nyuwei. After that, Weirui was used as the rectification name in the subsequent dynasties, and in recent times, the name of Yuzhu is mostly used in materia medica and prescription books. In ancient times, there were different names for Yuzhu, such as Nyuwei, Weiwei and Weirui. The names of the three are similar and there was a mixed use of the same name and foreign matter in history. In the Tang dynasty, SU Jing listed Nyuwei with the effect of curing dysentery in the intermediate of herbal part of Xinxiu Bencao according to its different efficacy. However, based on Shennong Bencaojing, Mingyi Bielu and the different energy efficiency of medical prescriptions, SU Song of the Northern Song dynasty believed that the three were medicinal materials of different origins. In short, the names of the three have been unclear in history for a long time. According to the development of the time line, this paper examines the names and realities of the three, and concludes that the two(Weiwei and Weirui) are the same medicinal material, that is, Polygonatum odoratum of Liliaceae, and the Nyuwei is Clematis apiifolia of Ranunculaceae, and the source relationship of the three is clarified. The mainstream source of Yuzhu used in the past dynasties was the rhizome of P. odoratum, which was widely distributed in the wild and has a large amount of resources. The origins of Yuzhu recorded in ancient times were mainly Taishan in Shandong, Chuzhou and Shuzhou in Anhui, and Hanzhong in Shaanxi, in modern times, it was produced in northern Hebei and Shaoyang in Hunan with high quality, and in the modern times, Jiangbei Yuzhu from Haimen in Jiangsu, Anyuzhu from Nanling, Anqing and Tongling in Anhui, Guanyuzhu from Fengrun, Yutian, Zunhua, Huailai in Hebei and Suizhong, Jinxi, Jianchang, Lingyuan, Liaoyang, Haicheng, Gaiping in Liaoning, Xiangyuzhu from Shaoyang in Hunan are the authentic medicinal material. In ancient times, the quality of Yuzhu was good if it was fat and white, while in modern times, it is better with thick roots, bright yellow color, soft texture, no stiff skin and no oiliness. In ancient times, the origin processing of POR was mostly dried in the shade, but in modern times, it is mostly sun-dried or dried after steaming and rubbing. The ancient processing was mostly scraped off the skin and soaked in honey water and then steamed through, while the modern one is mostly washed and cut into thick slices for raw use. Based on the conclusion of the herbal textual research, it is suggested that the rhizome of P. odoratum of Liliaceae be used as the source for the development of famous classical formulas, and the corresponding specifications be selected according to the processing requirements of the prescription. In view of the Yiweitang in Wenbing Tiaobian, which uses the method of frying fragrance to achieve the effect of fragrant refreshing the spleen, it can be processed by referring to the stir-frying method in the current version of Chinese Pharmacopoeia.

20.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-12, 2023.
Artículo en Chino | WPRIM | ID: wpr-973127

RESUMEN

Through the textual research and analysis of the variety, origin, processing, quality evaluation and clinical application of Moslae Herba in ancient and modern literature, its origin of materia medica was clarified. Moslae Herba has experienced variety changes in history. Elsholtzia ciliata was the mainstream variety during and before the Song dynasty, however, during the Ming and Qing dynasties, emerging variety of Mosla chinensis rose to the mainstream status due to its remarkable efficacy and the formation of cultivation, and differentiated into two commodities(wild variety of Qingxiangru and cultivated variety of Jiangxiangru), cultivated products formed an authentic producing area in Jiangxi. The three varieties coexisted during the Ming and Qing dynasties, and the Elsholtzia varieties were gradually eliminated. Variety changes have caused changes in the functions and indications of drugs. E. ciliata had the effect of clearing heat and was mainly used to treat heatstroke and cholera, while M. chinensis was used for exogenous wind cold and dampness in the summer because of its warm and strong sweating properties, but not for cholera. Traditional Moslae Herba is mainly harvested in the summer and autumn (flowering to fruiting stage) and the above-ground parts are dry in the shade and used as medicine. Modern Qingxiangru is mostly harvested before the flowering period, and Jiangxiangru is harvested after flowering and fruiting in late summer and early autumn. In summary, according to the 2020 edition of Chinese Pharmacopoeia, the dried above-ground parts of Moslae Herba should be selected for Xinjia Xiangruyin in the Catalogue of Ancient Famous Classical Formulas(The First Batch), mainly the cultivated variety of Jiangxiangru, and the raw products is cut into segments and used as medicine. It is suggested that when applying and developing famous classical formulas containing Moslae Herba at different periods of time today, the origin should be established in conjunction with clinical efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA