Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo | IMSEAR | ID: sea-209925

RESUMEN

Spent coffee ground (SCG) is the waste generated during the preparation of instant coffee and is the sourceof industrially valuable organic compounds. In this article, SCG was pretreated by roasting at 150°C for 30minutes and heated with water at 90°C for extracting carbohydrates and phenolic compounds, after which1.0% (w/w) β-mannanase was applied for the hydrolysis of pretreated SCG. SCG is characterized in terms ofits total sugar content by the anthrone–sulfuric assay and phenolic compounds by Folin−Ciocalteu’s procedure.In this study, the total sugar increased by 14.79% (w/w) by the roasting process, and subsequently enzymatichydrolysis increased the total sugar yield up to 17.43% (w/w) compared to the untreated SCG, i.e., 10.24%(w/w). The reducing sugar was estimated by the dinitrosalicylic acid method and the end product increased to106.10 (mg Glucose/g) from the initial content 5.32 (mg Glucose/g raw SCG). The total phenolic compoundincreased to 291.86 (mg Gallic acid/g lyophilized material), which was a 6.39-fold increase compared to thenative SCG (45.68 mg Gallic acid/g). These results point to the valuable compounds present in SCG, can beenhanced by combining the roasting pretreatment and enzymatic hydrolysis, and can be utilized in the foodand biotech industries.

2.
Artículo | IMSEAR | ID: sea-188619

RESUMEN

Aims: The process parameters affecting enzyme production were optimized to ascertain the best optimal conditions for β-mannanase production by Penicillium italicum in solid state fermentation. Study Design: Four stages of experimental processes were designed for this study. The first experiment, samples were withdrawn after 24, 48, 72, 96, 120, 144,168 and 192 h incubation. In second experiment, the fermentation media were incubated at different temperatures. In third experiment, the effect of different pH values on β-mannanase production was evaluated, while the fourth experiment described the supplementation of surfactants in mineral salt solution for β-mannanase production. Place and Duration of Study: Microbiology Research Laboratory, Federal University of Technology, Akure Nigeria between September 2011 and March 2012. Methodology: β-mannanase production was conducted using Locust Bean Gum (LBG) as the sole carbon source; moisten with mineral salt solution, and enzyme activity determined by dinitrosalicylic acid method, while protein content was determined by Lowry method. Results: Maximum enzyme activity (146.389 U/ml) was observed after 72 h of incubation. Different surfactants were supplemented in the basal medium, and Sodium Dodecyl Sulfate (SDS) was observed to give the highest β-mannanase activity of 53.335 U/ml. Initial pH of the culture medium was optimized and a pH of 6.0 was found to support maximum enzyme activity (173.241 U/mg protein). The optimum incubation temperature was achieved at 35°C. Conclusion: The results obtained provide information on optimal process parameters that might improve the yield of β-mannanase by P. italicum for better fish feed formulation, especially in the larval stages of fish fingerlings when the enzyme system is not efficient.

3.
China Journal of Chinese Materia Medica ; (24): 2964-2972, 2018.
Artículo en Chino | WPRIM | ID: wpr-687360

RESUMEN

The polysaccharides of different germplasm resources of Astragalus membranaceus var. mongholicus〓(cultured Astragalus Radix (RA) and natural RA) and A. membranaceus (MJ) (cultured RA and natural RA) were studied by using the optimal enzymatic conditions of endo-1,4-β-mannanase. Saccharide fingerprints were obtained for the identification and evaluation of the germplasm resources of RA by Fluorophore-assisted Carbohydrate Electrophoresis (FACE). The data were analyzed by principal component analysis to obtain the difference between RA of different germplasm resources. The results showed that trisaccharide, tetrasaccharide and pentasaccharide of endo-1,4-β-mannanase hydrolyzate could be used as the differential fragments to distinguish MG (cultured RA and natural RA); the pentasaccharide and hexasaccharide can be used as differentially expressed carbohydrate fragments that distinguish MJ (cultured RA and natural RA); the trisaccharide and tetrasaccharide can be used as the differential fragments to distinguish the cultured MG and cultured MJ. Studies have shown that polysaccharide products degraded by endo-1,4-β-mannanase can well distinguish RA species (MG and MJ), growth mode (cultured RA and natural RA). This study laid the foundation for the quality evaluation of Astragalus medicinal herbs and screening of active oligosaccharides.

4.
Artículo en Inglés | IMSEAR | ID: sea-163255

RESUMEN

Aims: This study was carried out to screen bacterial strains of agricultural wastes origin for β-mannanase production and optimization of culture conditions. Study Design: The first experiment, bacterial strains were screened for β-mannanase production. In the second experiment, the best incubation time was determined. In the third experiment, different agricultural wastes were screened. In the fourth experiment, different nitrogen sources were screened. In the fifth and sixth experiments described the effect of different pH values and incubation temperatures on β-mannanase production. The best moisture content was determined in the seventh experiment, while in experiment eight; effect of different inoculum concentrations was evaluated. Place and Duration of Study: Microbiology Research Laboratory, Federal University of Technology, Akure, Nigeria between September 2011 and March 2012. Methodology: Bacterial strains were screened and β-mannanase production from optimization studies was conducted on Locust Bean Gum. Enzyme activity was determined by dinitrosalicylic acid method. Results: Out of the sixteen bacterial strains screened, Klebsiella edwardsii designated 1A was selected as the most potent in producing enzyme of high activity and it was therefore selected for further studies. Pineapple peels were found to be the most effective carbon source with a highest β-mannanase activity of 8.533±0.08U/ml. Ammonium nitrate (NH4NO3) was obtained to be the best nitrogen source out of all the nitrogen sources screened. The best moisture content was obtained at 1:11 (ratio of substrate to salt solution). Inoculum concentration of 1.0% (v/v) yielded highest β-mannanase activity of 15.833±0.01U/ml. Addition of simple carbon sources to medium containing LBG caused a catabolic repression of β-mannanase synthesis. Conclusion: The optimal culture conditions obtained from this study will help to standardize the requirements for optimum β-mannanase production using cheaper substrates.

5.
Artículo en Inglés | IMSEAR | ID: sea-163250

RESUMEN

Aim: The study aimed at purification and characterization of β-mannanase from Penicillium italicum. Study Design: The first experiment, β-mannanase from Penicillium italicum was produced in basal medium supplemented with Locust Bean Gum (LBG). The second described the purification of crude β-mannanase, while the third experiment dealt with characterization and kinetic studies of purified β-mannanase from Penicillium italicum. Place and Duration of Study: Microbiology Research Laboratory, Federal University of Technology, Akure Nigeria between July and August 2012. Methodology: β-mannanase from Penicillium italicum was produced in basal medium supplemented with LBG. The enzyme was purified by ammonium sulphate precipitation, ion exchange chromatography (DEAE-Sephadex A-50) and gel filtration (Sephadex G-150). The purified enzyme was characterized to determine its optimal conditions by standard assay procedures. The kinetic parameters of the purified enzyme were determined by Lineweaver-Bulk plot. Results: Fractionation of ammonium sulphate precipitated β-mannanase from Penicillium italicum on sephadex A-50 produced one major activity peak. Further fractionation of partially purified enzyme from ion exchange on Sephadex G-150 yielded one activity peak. A pH of 5.0 was optimum for purified enzyme activity and relatively stable between 40 to 100 min of incubation at this pH. The optimum temperature was 70ºC and 100% thermostable for 40 min after which a slight decline in activity was observed. The apparent Km for the hydrolysis of LBG from Lineweaver-Bulk plot was approximately 0.26 mg/mL, while the Vmax was 0.12 μmol/min/mL. The incubation of salts and organic compounds at 10 mM and 40 mM caused inhibition of enzyme activity. At 20 mM, enzyme activity was enhanced by FeSO4.7H2O, SDS and ZnSO4. 7H2O, while others caused inhibition of enzyme activity. The incubation of enzyme with CaCl2 and FeSO4.7H2O at 60 mM enhanced enzyme activity, while others caused inhibition. Conclusion: The result obtained from this study revealed that purified β-mannanase is active over a wide pH and temperature, and its stability implies that the enzyme will be useful during industrial processes where extreme conditions are required.

6.
Artículo en Inglés | IMSEAR | ID: sea-162948

RESUMEN

Aim: The study evaluated the inhibitory effect of fermentation products of β-mannanaseproducing bacteria on selected poultry borne pathogens. Study Design: The first experiment, bacterial isolates previously confirmed positive for mannanase by plate assay technique were further screened for mannanase production in submerged state fermentation. In the second experiment, inhibitory effect of fermentation products of mannanase-producing bacteria on selected poultry pathogens was evaluated. Place and Duration of Study: Microbiology Research Laboratory, Federal University of Technology, Akure Nigeria between September 2011 and March 2012. Methodology: Bacterial isolates from agricultural wastes previously confirmed positive for mannanase activity by plate assay were further screened for their potential performance under submerged state fermentation and enzyme activity determined by dinitrosalicylic acid method. The inhibitory action of β-mannanase-producing bacteria was determined by supplementation of supernatant and plating method. Results: Isolate 1A showed highest mannanase activity (13.430 U/ml), displayed broad inhibition to selected poultry borne pathogens; Klebsiella oxytoca, Shigella alkalescens, Escherichia coli, Salmonella typhii, Staphylococcus aureus and Streptococcus sp. Apart from isolate 1A, fermentation products of other isolates generated from the mannolytic action of β-mannanase on mannan containing substrate displayed different percentage inhibition on selected poultry borne pathogens. Conclusion: The results suggested that fermentation products from β-mannanaseproducing bacteria might possess antibacterial properties which could be applied in poultry farms.


Asunto(s)
Animales , Bacterias/química , Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Fermentación , Aves de Corral/microbiología , Enfermedades de las Aves de Corral/microbiología , beta-Manosidasa/química , beta-Manosidasa/metabolismo , beta-Manosidasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA