Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Journal of Environmental and Occupational Medicine ; (12): 89-95, 2024.
Artículo en Chino | WPRIM | ID: wpr-1006462

RESUMEN

Background Exposure to diisononyl phthalate (DINP), an endocrine disruptor associated with metabolic diseases and widely used in plastic products, has been linked to the development of several adverse health outcomes in the liver, including non-alcoholic fatty liver disease (NAFLD). Objective To investigate the effects and the possible molecular mechanisms of DINP exposure on lipid metabolism in human hepatocellular carcinoma cells (HepG2 cells). Methods First, HepG2 cells were treated with DINP at three time spots (24, 48, and 72 h) and eleven doses (0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, and 100 mmol·L−1). Cell viability were detected using cell counting kit 8 (CCK8). Intracellular lipid deposition was determined by oil red O staining and lipid content detection, and triglyceride (TG) and cholesterol (TC) were further detected. Finally, the mRNA expression levels were detected by fluorescence quantitative PCR, including fatty acid synthesis related genes [acetyl-CoA carboxylase alpha (Accα), fatty acid synthase (Fasn), malonyl-CoA decarboxylase (Mlycd), and sterol regulatory element binding protein 1 (Srebp1)] and β-oxidation related genes [peroxisome proliferator activated receptor alpha (Pparα), AMP-activated protein kinase (Ampk), carnitine palmitoyltransferase 1A (Cpt-1a), transcription factor A, mitochondrial (Tfam), nuclear respiratory factor 1 (Nrf1), and peroxisome proliferator-activated receptor gamma and coactivator 1 alpha (Pgc1-α)]. Results Compared with the control group (0 mmol·L−1), the no observed adverse effect levels (NOAEL) of HepG2 cell viability were 0.3, 0.1, and 0.1 mmol·L−1 after 24, 48, and 72 h exposure to DINP, respectively, and the corresponding lowest observed adverse effect levels (LOAEL) were 1, 0.3, and 0.3 mmol·L−1, respectively (P<0.05). After exposure to 30 mmol·L−1 and 100 mmol·L−1 DINP for 24 h, the intracellular lipid content, lipid deposition, TG, and TC levels were increased significantly compared with the control group (P<0.01). Compared with the control group, the mRNA expression levels of genes related to fatty acid synthesis, such as Mlycd, Srebp1, Fasn, and Accα, were down-regulated after the 100 mmol·L−1 DINP exposure for 24 h, while the mRNA expression level of Mlycd was up-regulated in the 30 mmol·L−1 group. The β-oxidation related genes such as Ampk, Pparα, and Tfam were up-regulated significantly after the 100 mmol·L−1 DINP exposure, while Cpt-1a mRNA expression level was down-regulated (P<0.05). Conclusion Exposure to DINP at 30 mmol·L−1 and 100 mmol·L−1 can interfere with fatty acid synthesis and β-oxidation in lipid metabolism of HepG2 cells, resulting in lipid deposition.

2.
Acta Pharmaceutica Sinica ; (12): 368-373, 2024.
Artículo en Chino | WPRIM | ID: wpr-1016637

RESUMEN

This study aimed to investigate halofuginone's inhibitory effect and mechanism on the activity of hepatocellular carcinoma cells. HepG2 cells were used to detect the effects of halofuginone. After treatment, cell activity, cell migration, cell cycle, and cell apoptosis were detected by CCK-8, transwell, and flow cytometry, respectively. The expression levels of growth and metabolism-related factors such as citrate synthase (CS), ketoglutarate dehydrogenase (OGDH), and isocitrate deoxygenase (IDH) were detected by real-time quantitative PCR and Western blot. Compared with the control group, the activity of HepG2 cells was significantly inhibited by halofuginone (P < 0.01), the migration rate of HepG2 cells was decreased (P < 0.01), the apoptosis of HepG2 cells was induced (P < 0.01), and the cell cycle was arrested in S phase (P < 0.01). The expression levels of tricarboxylic acid key enzymes CS, IDH3, and OGDH were up-regulated, the expression level of isocitrate dehydrogenase isoenzymes IDH1 and IDH2 were down-regulation. In conclusion, halofuginone can inhibit the proliferation and migration of HepG2 cells and promote apoptosis in a dose-dependent manner, which may be due to the promotion of the aerobic metabolism of cells.

3.
Acta Pharmaceutica Sinica ; (12): 377-385, 2023.
Artículo en Chino | WPRIM | ID: wpr-965697

RESUMEN

To investigate the mechanism by which Schisandra Chinensis mediates the phenotypic transformation of microglia via microRNA-124 (miR-124)-based regulation of the Toll-like receptor 4 (TLR4) pathway, a model was established using lipopolysaccharide (LPS) stimulation of BV2 cells. Cells were treated with different doses of Schisandra Chinensis extract (SCE). MiR-124 inhibitors and negative control sequences (NC inhibitor) were transfected into LPS-induced BV2 cells and treated with SCE. The MTT assay was used for cell activity detection; an NO kit was used to measure NO release; ELISA kits were used to measure the levels of interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α). Microglia markers, including ionized calcium binding adapter molecule-1 (IBA-1) and arginase-1 (Arg-1), and the nuclear translocation of nuclear factor-kappa B (NF-κB) were evaluated by immunofluorescent staining. NF-κB p65, IBA-1, Arg-1, TLR4, myeloid differentiation primary factor 88 (MyD88), inhibitor of nuclear factor-kappa B kinases-α (IKK-α), IL-10, TNF-α were detected by immunoblot. SCE at concentrations ranging from 31.25 to 250 μg·mL-1 had no significant effect on cell activity. SCE treatment significantly inhibited NO release induced by LPS (P < 0.001, P < 0.01), increased the level of IL-10 (P < 0.05), and decreased the level of TNF-α (P < 0.001). In addition, SCE significantly reduced the expression of TNF-α, IBA-1, TLR4, and MyD88 (P < 0.01, P < 0.001) and elevated the expression of IL-10, Arg-1, NF-κB P65 and IKK-α (P < 0.001, P < 0.01, P < 0.05). SCE treatment could also promote the expression of miR-124 (P < 0.01). However, transfection with the miR-124 inhibitor increased TNF-α (P < 0.001), decreased the level of IL-10 (P < 0.05), increased the mRNA level and the protein expression of TNF-α and IBA-1 (P < 0.05, P < 0.01, P < 0.001), and decreased the mRNA level and protein expression of IL-10 and Arg-1 (P < 0.001, P < 0.01). In addition, the inhibition of TLR4 and MyD88 was attenuated. In conclusion, SCE appears to inhibit the activation of TLR4 signaling pathway by upregulating miR-124 so as to inhibit microglia M1 polarization and promote microglia M2 polarization.

4.
Journal of Environmental and Occupational Medicine ; (12): 216-223, 2023.
Artículo en Chino | WPRIM | ID: wpr-964936

RESUMEN

Background Imidacloprid is a neonicotinoid insecticide that is widely used in agricultural production, with a high detection rate in human biological samples. Previous studies have shown a high correlation between imidacloprid exposure and liver injury, but the specific mechanism is still unknown. Objective To observe potential toxic effects of HepG2 cells and its perturbation of non-targeted metabolic profile after imidacloprid exposure, and to explore possible molecular mechanisms of hepatotoxicity of imidacloprid by analyzing invovlved biological processes and signaling pathways. Methods HepG2 cell suspension was prepared and seeded in a 96-well plate, which was divided into blank control group, dimethyl sulfoxide (DMSO) solvent control group and imidacloprid exposure groups with multiple concentrations. Each group was set with 5 parallel samples. The viability of HepG2 cells viability were determined after 8 h of exposure to different concentrationsof imidacloprid (1, 2.5, 5, 7.5, 10 mmol·L−1), and the dose-effect relationship was analyzed. A proper concentration (3 mmol·L−1 with 80% viability) was chosen for imidacloprid exposure, non-targeted metabolomic analysis was applied to the cultivated HepG2 cells using UHPLC-Q-TOF/MS technology, the differential metabolites between groups were screened, and the bioprocess and related signaling pathways of their enrichment were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results Compared to the other two groups, the survival rates of HepG2 cells in the imidacloprid exposure groups decreased. A survival rate of about 86% of HepG2 cells was found in HepG2 cells exposed to 2.5 mmol·L−1 imidacloprid exposure. The non-targeted metabolomics studies showed that 61 metabolites were significantly affected in HepG2 cells after 3 mmol·L−1 imidacloprid exposure, including creatine (variable importance in projection VIP=1.11, P<0.001), arginine (VIP=1.47, P=0.048), taurine (VIP=4.28, P=0.001), and α-D-glucose (VIP=1.90, P=0.006). The differential metabolites enriched in bioprocess and related signaling pathways were mainly directed to mTOR signaling pathways (P<0.001), arginine and proline metabolism (P=0.002), and galactose metabolism (P=0.015). Conclusion Imidacloprid exposure can significantly inhibit the survival rate of HepG2 cells, and interfere with the mTOR signaling pathway, arginine and proline metabolism, galactose metabolism, and so on.

5.
Biomedical and Environmental Sciences ; (12): 862-868, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1007859

RESUMEN

The PRR11 gene (Proline Rich 11) has been implicated in lung cancer; however, relationship between PRR11 and immune infiltration is not clearly understood. In this study, we used The Cancer Genome Atlas (TCGA) data to analyze the lung adenocarcinoma patients; PRR11 gene expression, clinicopathological findings, enrichment, and immune infiltration were also studied. PRR11 immune response expression assays in lung adenocarcinoma (LUAD) were performed using TIMER, and statistical analysis and visualization were conducted using R software. All data were verified using Gene Expression Profiling Interactive Analysis (GEPIA), and the Human Protein Atlas (HPA). We found that PRR11 was an important prognostic factor in patients with LUAD. PRR11 expression was correlated with tumor stage and progression. Gene Set Enrichment Analysis (GSEA) showed that PRR11 was enriched in the cell cycle regulatory pathways. Immune infiltration analysis revealed that the number of T helper 2 (Th2) cells increased when PRR11 was overexpressed. These results confirm the role of PRR11 as a prognostic marker of lung adenocarcinoma by controlling the cell cycle and influencing the immune system to facilitate lung cancer progression.


Asunto(s)
Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Bioensayo , Ciclo Celular
6.
China Pharmacy ; (12): 1863-1868, 2023.
Artículo en Chino | WPRIM | ID: wpr-979938

RESUMEN

OBJECTIVE To investigate the inhibitory effect of berberine (BER) on the invasion and migration of human renal carcinoma cells and its potential mechanism. METHODS Using human renal carcinoma OSRC-2 cell as object, alamarBlue assay was adopted to detect the inhibitory effects of 0 (control group), 25, 50, 75, 100, 125, 150, 175 and 200 μmol/L BER on the proliferation of OSRC-2 cell after treatment for 24 h and 48 h. After treated with 0(control group), 50, 100 μmol/L BER for 48 h, the effect of BER on cell cycle was analyzed by flow cytometry. The migration of OSRC-2 cells in 24 h and 36 h was observed by cell scratch test, and the invasion ability of OSRC-2 cells in 24 h was detected by Transwell assay. The protein expression of methyltransferase-like 3 (METTL3) was detected by Western blot after treatment for 48 h, and RNA methylation quantification kit was used to detect the levels of N6-methyladenosine (m6A) in OSRC-2 cells. RESULTS Compared with control group, BER at different concentrations could significantly decrease the survival rate of OSRC-2 cells (P<0.01), and showed a dose-dependent and time-dependent manner. After 48 h of BER treatment at 50, 100 μmol/L, the cell was arrested in G0/G1 phase (P<0.01). Compared with control group, the migration and invasion abilities of cells in 50, 100 μmol/L BER group were significantly decreased (P<0.05 or P<0.01); the protein expression of METTL3 and the level of m6A in RNA were significantly decreased (P<0.01). CONCLUSIONS BER can inhibit level of m6A by down-regulating the expression of METTL3, thereby inhibiting the invasion and metastasis of human renal carcinoma cells.

7.
Acta Pharmaceutica Sinica ; (12): 2461-2467, 2023.
Artículo en Chino | WPRIM | ID: wpr-999102

RESUMEN

Inductively coupled plasma mass spectrometry (ICP-MS) was applied to determine the concentrations of lead (Pb), cadmium (Cd) and arsenic (As) in Lindera aggregata (Sims) Kosterm. The physiologically based extraction test (PBET) digestion in vitro/Caco-2 cell model was established to investigate the bioaccessible contents of Pb, Cd and As in decoction of Lindera aggregata (Sims) Kosterm. The target-organ toxicity dose modification of HI method (TTD) was used to evaluate the cumulative risk caused by the combined exposure of the total levels of Pb, Cd and As in Lindera aggregata (Sims) Kosterm. and the bioaccessible contents in the decoction. The results showed that the total contents of Pb, Cd and As in 4 batches of samples were in the range of 2.901-3.872, 1.299-1.800 and 0.062-0.216 mg·kg-1, respectively. After transportation by Cacco-2 cells, the bioaccessible contents of Pb, Cd, and As in the decoction were in the range of 0.045-0.080, 0.070-0.112 and 0.004-0.018 mg·kg-1. The results of risk assessment showed that calculated by the total amounts of heavy metals in the Lindera aggregata (Sims) Kosterm., for the end points of nervous system, the cumulative risks of co-exposure of heavy metals in 3 batches of samples were of concern. After decoction and transportation by Caco-2 cells, for the end points of cardiovascular system, blood, nervous system, kidney and testis, the TTD modification of HI values of all batches of samples were less than 1, and the health risks were acceptable. The study provided methodology basis for a more objective assessment of the health risks of heavy metals and harmful elements in traditional Chinese medicine and for a more scientific limit standard of heavy metals and harmful elements.

8.
Journal of Environmental and Occupational Medicine ; (12): 1250-1256, 2023.
Artículo en Chino | WPRIM | ID: wpr-998748

RESUMEN

Background Aluminum activates signal transducer and activator of transcription 3 (STAT3), causing microglial nucleotide-binding and oligomerization domain-like receptors protein 3 (NLRP3) inflammasome activation and inflammatory responses and producing neurotoxicity. Objective To explore the role of STAT3 regulated NLRP3 inflammasomes in the inflammatory response of mouse microglia cell line (BV2) cells induced by maltol aluminum [Al(mal)3]. Methods BV2 cells were assigned to five groups: one control group, three Al(mal)3 exposure groups (low, medium, and high doses at 40, 80, and 160 μmol·L−1 Al(mal)3 respectively), and one C188-9 (STAT3 antagonist) intervention group [10 μmol·L−1 C188-9 +160 μmol·L−1 Al(mal)3]. Cell viability was detected by CCK8. The expression of M1/M2 type markers, i.e. CD68/CD206, STAT3, p-STAT3, NLRP3, cleaved-casepase-1, and apoptosis-associated speck-like protein (ASC) in BV2 cells were detected by Western blotting, and proinflammatory cytokines interleukin (IL)-1β and IL-18, and anti-inflammatory cytokine IL-10 were determined by ELISA. Results The results of cell viability assay showed that cell viability gradually decreased with the increase of Al(mal)3 dose. Compared with the control group, the cell viability of the Al(mal)3 high-dose group was decreased by 18% (P<0.05); compared with the Al(mal)3 high-dose group, the cell viability of the C188-9 intervention group was significantly elevated by 14% (P<0.05). Compared with the control group, the expression levels of CD68 in the Al(mal)3 low-, medium-, and high-dose groups were elevated by 19%, 20%, and 21%, respectively (P<0.05); the expression level of CD206 in the Al(mal)3 high-dose group was decreased by 25% (P<0.05). Compared with the Al(mal)3 high-dose group, the expression level of CD68 in the C188-9 intervention group was reduced by 9% (P<0.05), whereas the expression level of CD206 was elevated by 22% (P<0.05). Compared with the control group, the p-STAT3 protein expression and the p-STAT3/STAT3 ratio in the Al(mal)3 high-dose group increased by 129% and 127%, respectively (P<0.05). Compared with the Al(mal)3 high-dose group, the p-STAT3 protein expression and the p-STAT3/STAT3 ratio in the C188-9 intervention group were decreased by 55% and 54%, respectively (P>0.05). Compared with the control group, the expression level of NLRP3 protein increased by 75% in the Al(mal)3 high-dose group (P<0.05), the expression levels of cleaved-casepase-1 protein increased by 28% and 35% in the Al(mal)3 medium- and high-dose groups (P<0.05), and the expression levels of ASC increased by 22%, 25%, and 53% in the Al(mal)3 low-, medium- and high-dose groups (P<0.05), respectively. Compared with the Al(mal)3 high-dose group, the expression levels of NLRP3, cleaved-casepase-1, and ASC proteins in the C188-9 intervention group decreased by 30%, 19%, and 32%, respectively (P<0.05). Compared with the control group, the levels of IL-1β in the Al(mal)3 medium- and high-dose groups increased by 18% and 21%, respectively (P<0.05), and the level of IL-18 in the Al(mal)3 high-dose group increased by 10% (P<0.05). Compared with the Al(mal)3 high-dose group, the IL-18 levels were reduced by 23% in the C188-9 intervention group (P<0.05). The content of anti-inflammatory factor IL-10 did not differ significantly between groups (P>0.05). Conclusion Aluminum can induce inflammatory responses in BV2 microglia and is predominantly pro-inflammatory, and the mechanism may involve STAT3 regulation of NLRP3 inflammasome secretion of inflammatory factors.

9.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 481-488, 2023.
Artículo en Chino | WPRIM | ID: wpr-1014630

RESUMEN

AIM: To study the toxicity of genipin-a kind of geniposide metabolites induced human tubular epithelial cells HK-2 and its effect on NLRP3 pathway. METHODS: The dose of GP on HK-2 cells were preliminarily determined by CCK8 method, the apoptosis or necrosis rate of HK-2 cells was detected by Hoechst 33342 / PI, the level of LDH release and reactive oxygen species was detected by Kits, and mitochondrial membrane potential and intracellular calcium ion concentration were detected by high content imaging. Real-time PCR detected mRNA levels of kindey injury factor-1, osteopontin, NLRP3, Caspase-1, interleukin 1β, and interleukin 18. RESULTS: Compared with the 0 μg / mL group, GP>50 μg/mL significantly reduced cell viability (P< 0.05, P<0.01), and the IC50 value was 110.50 μg/mL. Set the control group, the low, medium and high dose groups of GP (50, 100, 200 μg/mL); Compared with the control group, the cell density decreased in the medium and high dose groups of GP, and the PI positivity, LDH release, ROS, Ca

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 94-101, 2022.
Artículo en Chino | WPRIM | ID: wpr-940801

RESUMEN

ObjectiveTo investigate the efficacy of Bushen Shengxue prescription and Yiqi Yangxue prescription in the treatment of chronic aplastic anemia and the effect on T cell subsets and the expression of T-box expressed in T cells (T-bet) and GATA binding protein 3 (GATA3). MethodA total of 585 patients with chronic aplastic anemia who were treated in 19 hospitals in China from May 2018 to June 2021 were enrolled. With the prospective, double-blind and randomized control methods, the patients were randomized into three groups: kidney deficiency group, Qi and blood deficiency group, and control group. The three groups were respectively treated with Bushen Shengxue prescription granule, Yiqi Yangxue prescription granule, and Placebo (half the dose of Bushen Shengxue formula granules). In addition, all of them were given oral cyclosporin and androgen. The treatment lasted 6 months, with 3 months as a course. The blood routine indexes, T cell subsets, and fusion genes T-bet and GATA3 before and after treatment were analyzed, and the safety indexes were monitored. ResultDuring the observation, a total of 75 cases dropped out and 18 were rejected. Finally, 161 cases in the kidney deficiency group, 164 in the Qi and blood deficiency group, and 167 in the control group were included. After 6 months of treatment, the total effective rate was 98.8% (159/161) in the kidney deficiency group, which was higher than the 79.9% (131/164) in the Qi and blood deficiency group (χ2=30.135, P<0.01) and the 61.7% (103/167) in the control group (χ2=70.126, P<0.01). The total effective rate was higher in the Qi and blood deficiency group than in the control group (χ2=13.232, P<0.01). After treatment, the hemoglobin (HGB) content increased significantly in three groups (P<0.05) as compared with that before treatment, particularly the kidney deficiency group (P<0.01). After treatment, the white blood cell (WBC) count and platelet (PLT) count in the kidney deficiency group and the control group increased compared with those in the Qi and blood deficiency group (P<0.01). There was no specific difference in neutrophils (ANC) after treatment among the three groups. At the same time point, the level of T helper type 1 (Th1) cells, Th1/Th2 ratio (P<0.05), level of CD4+, and CD4+/CD8+ ratio (P<0.05) were significantly low in the kidney deficiency group among three groups. There was no significant difference in CD19-, HLA/DR+, and CD25+ between the kidney deficiency group and the other two groups, but the T-bet of the kidney deficiency group and the control group was lower than that of the Qi and blood deficiency group (P<0.05). ConclusionBushen Shengxue prescription exerts therapeutic effect on the aplastic anemia by improving the immunoregulatory mechanism, inhibiting the activity of immune system, modulating T cell subsets, suppressing Th1 and CD4+, and promoting bone marrow hematopoiesis. Moreover, it is safe with little side effects, which is worthy of further promotion.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-11, 2022.
Artículo en Chino | WPRIM | ID: wpr-940201

RESUMEN

ObjectiveTo explore the effect of the serum containing Huanglian Wendantang on pyroptosis in vitro model of insulin resistance and its mechanism. MethodSD rats were randomly divided into two groups, namely Huanglian Wendantang-containing serum group and blank serum group, and given 7.8 g·kg-1·d-1 Huanglian Wendantang and equal volume of normal saline by intragastric administration according to body surface area. Blank serum and medicated serum with different concentration were extracted and prepared. HepG2 cells were treated with sodium palmitate to construct the model of insulin resistance (IR), and they were randomly divided into control group, model group, metformin hydrochloride group, blank serum group, and Huanglian Wendantang-containing serum high-, medium-, and low-dose groups. After 24 h of cultivation, the cells of each group were treated with insulin for 15 min at concentration of 1×10-7 mol·L-1, and the cell supernatant was collected. The glucose oxidase (GOD-POD) kit was used to determine the glucose content of each group, and calculate the glucose consumption and inhibition rate. The methyl thiazolyl tetrazolium (MTT) assay was used to detect the cell proliferation, thus screening out the optimal dose of serum containing Huanglian Wendantang. HepG2 cells were randomly divided into control group, model group, and Huanglian Wendantang-containing serum group. The levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in each group were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA and protein expression levels of NOD like receptor protein 3 (NLRP3) in each group were determined by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. In terms of the mechanism, HepG2 cells were randomly divided into control group, empty vector group, NLRP3 overexpression group, empty vector + IR group, empty vector + IR + Huanglian Wendantang-containing serum group, NLRP3 overexpression + IR group, and NLRP3 overexpression + IR + Huanglian Wendantang-contain serum group. GOD-POD method was used to measure the glucose content of each group cells, and calculate the glucose consumption. ELISA was used to determine the release of IL-1β and IL-18 in each group. Real-time PCR and Western blot assay were used to determine the mRNA and protein expressions of cysteinyl aspartate specific proteinase-1 (Caspase-1), gasdermin D (GSDMD), and NLRP3. Immunofluorescence assay was used to detect NLRP3, GSDMD, and Caspase -1 expressions. ResultAs compared with the control group, the glucose consumption in the model group was significantly decreased (P<0.01). As compared with the model group, the increase of the glucose consumption of IR-HepG2 cells was the most significant in the Huanglian Wendantang-containing serum high-dose group (P< 0.01). As compared with the control group, the IL-1β and IL-18 release levels and the mRNA and protein expressions of NLRP3 in IR-HepG2 cells were significantly increased (P<0.05, P<0.01). Huanglian Wendantang effectively reduced IR-HepG2 cell supernatant IL-1β, IL-18, and NLRP3 mRNA and protein expressions as compared with the model group (P<0.05, P<0.01). Overexpression of NLRP3 significantly reduced the cell glucose consumption as compared with the control group and the empty vector group (P<0.01), and significantly up-regulated the IL-1β and IL-18 levels and the mRNA and protein levels of NLRP3, Caspase-1, and GSDMD as compared with the empty vector + IR group (P<0.05, P<0.01). Huanglian Wendantang-containing serum effectively reversed the above indicators as compared with the NLRP3 + IR group (P<0.05, P<0.01). ConclusionHigh fat-induced insulin sensitivity of IR-HepG2 cells is closely related to inflammation and NLRP3 expression. Huanglian Wendantang-containing serum improves IR-HepG2 cell pyroptosis through the targeted inhibition of NLRP3/Caspase-1 signaling pathway, which provides new therapeutic targets for the prevention and treatment of IR and type 2 diabetes mellitus (T2DM).

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-11, 2022.
Artículo en Chino | WPRIM | ID: wpr-940104

RESUMEN

ObjectiveTo explore the effect of the serum containing Huanglian Wendantang on pyroptosis in vitro model of insulin resistance and its mechanism. MethodSD rats were randomly divided into two groups, namely Huanglian Wendantang-containing serum group and blank serum group, and given 7.8 g·kg-1·d-1 Huanglian Wendantang and equal volume of normal saline by intragastric administration according to body surface area. Blank serum and medicated serum with different concentration were extracted and prepared. HepG2 cells were treated with sodium palmitate to construct the model of insulin resistance (IR), and they were randomly divided into control group, model group, metformin hydrochloride group, blank serum group, and Huanglian Wendantang-containing serum high-, medium-, and low-dose groups. After 24 h of cultivation, the cells of each group were treated with insulin for 15 min at concentration of 1×10-7 mol·L-1, and the cell supernatant was collected. The glucose oxidase (GOD-POD) kit was used to determine the glucose content of each group, and calculate the glucose consumption and inhibition rate. The methyl thiazolyl tetrazolium (MTT) assay was used to detect the cell proliferation, thus screening out the optimal dose of serum containing Huanglian Wendantang. HepG2 cells were randomly divided into control group, model group, and Huanglian Wendantang-containing serum group. The levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in each group were determined by enzyme-linked immunosorbent assay (ELISA), and the mRNA and protein expression levels of NOD like receptor protein 3 (NLRP3) in each group were determined by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. In terms of the mechanism, HepG2 cells were randomly divided into control group, empty vector group, NLRP3 overexpression group, empty vector + IR group, empty vector + IR + Huanglian Wendantang-containing serum group, NLRP3 overexpression + IR group, and NLRP3 overexpression + IR + Huanglian Wendantang-contain serum group. GOD-POD method was used to measure the glucose content of each group cells, and calculate the glucose consumption. ELISA was used to determine the release of IL-1β and IL-18 in each group. Real-time PCR and Western blot assay were used to determine the mRNA and protein expressions of cysteinyl aspartate specific proteinase-1 (Caspase-1), gasdermin D (GSDMD), and NLRP3. Immunofluorescence assay was used to detect NLRP3, GSDMD, and Caspase -1 expressions. ResultAs compared with the control group, the glucose consumption in the model group was significantly decreased (P<0.01). As compared with the model group, the increase of the glucose consumption of IR-HepG2 cells was the most significant in the Huanglian Wendantang-containing serum high-dose group (P< 0.01). As compared with the control group, the IL-1β and IL-18 release levels and the mRNA and protein expressions of NLRP3 in IR-HepG2 cells were significantly increased (P<0.05, P<0.01). Huanglian Wendantang effectively reduced IR-HepG2 cell supernatant IL-1β, IL-18, and NLRP3 mRNA and protein expressions as compared with the model group (P<0.05, P<0.01). Overexpression of NLRP3 significantly reduced the cell glucose consumption as compared with the control group and the empty vector group (P<0.01), and significantly up-regulated the IL-1β and IL-18 levels and the mRNA and protein levels of NLRP3, Caspase-1, and GSDMD as compared with the empty vector + IR group (P<0.05, P<0.01). Huanglian Wendantang-containing serum effectively reversed the above indicators as compared with the NLRP3 + IR group (P<0.05, P<0.01). ConclusionHigh fat-induced insulin sensitivity of IR-HepG2 cells is closely related to inflammation and NLRP3 expression. Huanglian Wendantang-containing serum improves IR-HepG2 cell pyroptosis through the targeted inhibition of NLRP3/Caspase-1 signaling pathway, which provides new therapeutic targets for the prevention and treatment of IR and type 2 diabetes mellitus (T2DM).

13.
Acta Anatomica Sinica ; (6): 479-487, 2022.
Artículo en Chino | WPRIM | ID: wpr-1015301

RESUMEN

[Abstract] Objective To investigate whether levosimendan (Lev) affects hypoxia / reoxygenation (H / R) - induced cardiomyocyte proliferation, apoptosis and fibrosis by regulating the molecular axis of long chain noncoding RNA (LncRNA) eosinophil granule ontogeny transcript (EGOT) / microRNA (miR) -641. Methods Rat cardiomyocytes H9C2 were cultured in vitro, and H / R-treated cells were used to establish cell damage models, which were randomly divided into control group, H / R group, H / R + Lev 1 μmol / L (H / R + Lev-L) group, H / R + Lev 5 μmol / L (H / R + Lev-M) group, and H / R + Lev 10 μmol / L (H / R + Lev-H) group, 9 samples per group. MTT method was used to detect cell proliferation. Flow cytometry was used to detect the apoptosis rate. Real-time P CR was used to detect the expression levels of EGOT and miR-641 mRNA. P cDNA-EGOT and EGOT small interfering RNA (si-EGOT) were transfected into H9 C2 cells respectively, and the cell proliferation and apoptosis rates were detected by the above method. The dual luciferase report experiment verified the targeting relationship between EGOT and miR-641. Western blotting was used to detect the expression levels of Bax, Bcl-2, collagen I (colI), collagen Ⅲ (col Ⅲ), tissue inhibitor of matrix metalloproteinase 2 (TIMP 2), matrix metalloproteinase-2 (MMP -2) . Results Compared with the control group, the cell survival rate of the H / R group reduced significantly (P < 0. 05), the apoptosis rate increased significantly (P < 0. 05), and the protein levels of Bax, c I, col Ⅲ, TIMP 2, and MMP -2 increased significantly (P < 0. 05), the level of Bcl-2 protein reduced significantly (P < 0. 05), the expression level of EGOT reduced significantly (P < 0. 05), the expression level of miR-641 increased significantly (P < 0. 05) . Compared with the H / R group, the cell survival rate of the H / R + Lev-L group, H / R + Lev-M group, and H / R + Lev-H group increased significantly (P < 0. 05), and the apoptosis rate decreased significant (P < 0. 05), the protein levels of Bax, colI, colⅢ, TIMP 2, MMP -2 reduced significantly (P < 0. 05), the level of Bcl-2 protein increased significantly (P < 0. 05), the expression level of EGOT increased significantly (P < 0. 05), the expression level of miR-641 reduced significantly (P < 0. 05), and each index of H / R + Lev-L group, H / R + Lev-M group, H / R + Lev-H group, the difference was statistically significant (P < 0. 05) . The dual luciferase report experiment confirmed that EGOT ccould target and bind to miR-641. The effect of transfecting pcDNA-EGOT and Lev was similar. Transfection of si-EGOT could reduce the effect of Lev on H / R-induced proliferation, apoptosis and fibrosis of H9 C2 cells. Conclusion Levosimendan may promote H / R-induced H9 C2 cell proliferation and inhibit apoptosis and fibrosis by up-regulating EGOT expression and down-regulating miR-641 expression.

14.
Protein & Cell ; (12): 490-512, 2022.
Artículo en Inglés | WPRIM | ID: wpr-939864

RESUMEN

LIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28's role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


Asunto(s)
Animales , Ratones , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Pluripotentes/metabolismo , ARN Mensajero/genética , ARN Ribosómico , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Cigoto/metabolismo
15.
Braz. J. Pharm. Sci. (Online) ; 58: e20989, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1420394

RESUMEN

Abstract Plants from genus Ephedra are commonly used by the Chinese people as folk medicine for treatment of various diseases. The current study was designed to explore the ethno-pharmacological based pharmacological potentials of Ephedra intermedia Schrenk & C.A. Mey. (E. intermedia). Plant aerial parts were extracted using ten solvent systems with increasing order of polarity. Samples were analyzed for total phenolic and flavonoid contents, HPLC-DAD analysis, antibacterial, antifungal, HepG2 cell line cytotoxicity, hemolysis and antioxidant potentials following standard procedures. Highest percent extract recovery was observed in Eth+WT (25.55 % w/w) solvent system. Flavonoid and phenolic contents were higher in chloroform and Met+WT fractions respectively. Considerable antibacterial activity was shown by Eth+Met extract against B. subtilis and K. pneumonia (MIC of 11.1μg/mL for each). Eth extract exhibited high antifungal activity against A. fumigates (15±0.31 mm DIZ). Met+WT extract showed significant cytotoxicity against HepG2 cell lines with IC50 of 13.51+0.69 μg/mL. Substantial free radical scavenging activity (74.9%) was observed for Met+Eth extract. In the current study, several solvent systems were used for more effective extraction of fractions and can be useful in the isolation of phytochemicals. Various fractions exhibited considerable antimicrobial, antioxidant and cytotoxic potentials. Biological potentials of E. intermedia signify its potential uses in microbial, cancer and degenerative disorders and thus warrant further detailed studies.

17.
China Journal of Chinese Materia Medica ; (24): 2094-2103, 2021.
Artículo en Chino | WPRIM | ID: wpr-879135

RESUMEN

The absorption is the key to the resulted efficacy of orally administered drugs and the small intestine is the main site to absorb the orally administered drug. In this paper, internationally recognized human colon adenocarcinoma cell line(Caco-2) monola-yer model which can simulate small intestinal epithelial cell was used to comparatively study the absorption and transportation diffe-rences of total coumarins and main individual coumarin in Angelica dahurica 'Yubaizhi' by separately using 6-and 12-well plates. It was found that apparent permeability coefficient(P_(app)) values of oxypeucedanin hydrate, byakangelicin and phellopterin were at the quantitative degree of 1 × 10~(-5) cm·s~(-1) when the individual administration was conducted independently, indicating that they were well-absorbed compounds. P_(app) ratio of their bi-directional transportation was close to 1, indicating that they can be absorbed across Caco-2 monolayer by passive diffusion mechanism without carrier mediation during the transportation. The similar trend of transportation was also observed for imperatorin, isoimperatorin and bergapten. The P_(app) values of oxypeucedanin hydrate, byakangelicin and bergapten were at quantitative degree of 1 × 10~(-5) cm·s~(-1) when the administration of total coumarins in Angelica dahurica 'Yubaizhi' was conducted, indicating that they were well-absorbed compounds. The results were consistent with those of independent administration of individual coumarins. Whereas, the P_(app) values of imperatorin, phellopterin and isoimperatorin in the total coumarins decreased, indicating that the interaction between compounds may exist although the P_(app) value ratio of bi-directional transportation was between 0.5 and 1.5. The results laid the foundation for intestinal absorption study of Angelica dahurica 'Yubaizhi' coumarins in compound Chinese medicine.


Asunto(s)
Humanos , Angelica , Células CACO-2 , Cumarinas , Medicamentos Herbarios Chinos , Absorción Intestinal , Raíces de Plantas
18.
China Journal of Chinese Materia Medica ; (24): 2051-2060, 2021.
Artículo en Chino | WPRIM | ID: wpr-879129

RESUMEN

Nanocrystals self-stabilized Pickering emulsion(NSSPE) is a new kind of emulsion where only nanocrystals of poorly soluble drugs are used as stabilizers. Our previous study showed that NSSPE with Ligusticum chuanxiong oil as the main oil phase can significantly promote oral absorption of puerarin. The present study aimed to explore its absorption mechanism in oral administration. The in vitro dissolution test was carried out to study the effect of NSSPE on release of puerarin. The effects and mechanism of NSSPE on uptake and transport of puerarin across Caco-2 cell were investigated. The results showed that the drug release rate of NSSPE was similar to that of nanocrystals, with their cumulative dissolution of puerarin not affected by pH of releasing mediums, both significantly higher than that of crude material. The uptake of puerarin in NSSPE was concentration-dependent and significantly higher than that of solution or surfactant stabilized emulsion. Genistein and indomethacin, inhibitors of lipid rafts/caveolin, could significantly reduce the uptake of puerarin in NSSPE. Compared with solution, NSSPE and surfactants stabilized emulsion obviously increased transport rate K_a and apparent permeability coefficient P_(app) of puerarin in AP → BL direction, but there was no significant difference in BL → AP direction. It could be inferred that there were both passive and active transport mechanisms, as well as lipid raft/caveolin mediated endocytosis for absorption of NSSPE. The promoted oral absorption of puerarin in NSSPE was mainly related to the existing nanocrystal form which could promote dissolution, puerarin as well as Ligusticum chuanxiong oil which could promote drug transmembrane transport and inhibit drug efflux. It is the unique structure and composition of the compound NSSPE that promoted the oral absorption of puerarin.


Asunto(s)
Humanos , Células CACO-2 , Medicamentos Herbarios Chinos , Emulsiones , Isoflavonas , Nanopartículas
19.
China Journal of Chinese Materia Medica ; (24): 1120-1127, 2021.
Artículo en Chino | WPRIM | ID: wpr-879012

RESUMEN

To evaluate the effects of Hydroxypropyl methylcellulose acetate succinate(HPMCAS MF) on absorption of silybin(SLB) from supersaturable self-nanoemulsifying drug delivery system which was pre-prepared at the early stage experiment. The cell toxicity of self-emulsifying preparation was evaluated by the MTT method, and the in vitro membrane permeability and absorption promoting effect of the self-emulsifying preparation were evaluated by establishing a Caco-2 cell monolayer model. The in vivo and in vitro supersaturation correlation was evaluated via the blood concentration of SLB. The results of MTT showed that the concentration of the preparation below 2 mg·mL~(-1)(C_(SLB) 100 μg·mL~(-1)) was not toxic to Caco-2 cells, and the addition of polymer had no significant effect on Caco-2 cells viability. As compared with the solution group, the transport results showed that the P_(app)(AP→BL) of the self-emulsifying preparation had a very significant increase; the transport rate of silybin can be reduced by polymer in 0-30 min; however, there was no difference in supersaturated transport between supersaturated SLB self-nanoemulsion drug delivery system(SLB-SSNEDDS) and SLB self-nanoemulsion drug delivery system(SLB-SNEDDS) within 2 hours. As compared with SLB suspension, pharmacokinetic parameters showed that the blood concentration of both SLB-SNEDDS and SLB-SSNEDDS groups were significantly increased, and C_(max) was 5.25 times and 9.69 times respectively of that in SLB suspension group, with a relative bioavailability of 578.45% and 1 139.44% respectively. C_(max) and relative bioavailability of SLB-SSNEDDS were 1.85 times and 197% of those of SLB-SNEDDS, respectively. Therefore, on the one hand, SSNEDDS can increase the solubility of SLB in gastrointestinal tract by maintaining stability of SLB supersaturation state; on the other hand, the osmotic transport process of SLB was regulated through the composition of its preparations, and both of them could jointly promote the transport and absorption of SLB to improve the oral bioavailability of SLB.


Asunto(s)
Humanos , Administración Oral , Disponibilidad Biológica , Células CACO-2 , Sistemas de Liberación de Medicamentos , Emulsiones , Metilcelulosa/análogos & derivados , Nanopartículas , Tamaño de la Partícula , Silimarina , Solubilidad
20.
Chinese Journal of Cancer Biotherapy ; (6): 339-345, 2021.
Artículo en Chino | WPRIM | ID: wpr-876117

RESUMEN

@#[Abstract] Objective: To explore the application value of human IL-15 transgenic NCG mice (NCG-hIL-15 mice) in preclinical evaluation of chimeric antigen receptor modified NK (CAR-NK) cell therapy for tumor treatment. Methods: qPCR and WB were performed to detect the expression of human IL-15 in the bone marrow and main organs (spleen, liver, lung, kidney and pancreas) of transgenic mice. After being transfused with human PBMC-derived NK (PB-NK) cells, the NCG-hIL-15 mice and control NCG mice were continuously monitored for the in vivo amplification of NK cells and the changes in body weight and survival time. Flow cytometry was used to detect the differential expressions of activated receptors and inhibitory receptors in amplified NK cells. WB was used to detect the expressions of perforin and granzyme-B. NCG-hIL-15 mice or NCG mice bearing MIAPaca-2 cell transplanted tumor were treated with anti-MUC1-CAR-NK cell reinfusion; then, the CAR-NK cell survival in different groups of mice was detected by Flow cytometry, and the survival time of tumor bearing mice was recorded and tumor growth was detected by in vivo imaging. Results: The results indicated that PB-NK cells could proliferate stably within 10 weeks in NCG-hIL-15 mice without obvious graft versus host diseases (GVHD) during the observation period. The in vivo-expanded human NK cells maintained the original expression patterns of various surface molecules, including KARs and KIRs. Compared with the NK cells in NCG mice, the NK cells in NCG-hIL-15 mice contained significantly higher amounts of granzyme-B and perforin (all P<0.05). CAR-NK cells showed significantly increased survival rate and stronger tumor-inhibitory effect in NCG-hIL-15 mice as compared with those in control NCG mice, resulting in significantly prolonged survival in NCG-hIL-15 mice (all P<0.01). Conclusion: NCG-hIL-15 mouse model has potential application value in preclinical trial and biological evaluation of NK cell-based immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA