Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 75-82, 2024.
Artículo en Chino | WPRIM | ID: wpr-1006557

RESUMEN

ObjectiveTo investigate the effect of Tangbikang granules on oxidative stress of sciatic nerve in diabetic rats by regulating adenylate activated protein kinase/peroxisome proliferator-activated receptor γ coactivator-1α/mitochondrial Sirtuins 3 (AMPK/PGC-1α/SIRT3) signaling pathway. MethodThe spontaneous obesity type 2 diabetes model was established using ZDF rats. After modeling, they were randomly divided into high, medium, and low dose Tangbikang granule groups (2.5, 1.25, 0.625 g·kg-1·d-1) and lipoic acid group (0.026 8 g·kg-1·d-1), and the normal group was set up. The rats were administered continuously for 12 weeks after modeling. The blood glucose of rats was detected before intervention and at 4, 8, 12 weeks after intervention. At the 12th week, motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), nerve blood flow velocity, mechanical pain threshold, and thermal pain threshold were detected. The sciatic nerve was taken for hematoxylin-eosin (HE) staining to observe the tissue morphology. The ultrastructure of the sciatic nerve was observed by transmission electron microscope. The expression levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in sciatic nerve were determined by enzyme-related immunosorbent assay (ELISA). The mRNA expressions of AMPKα, AMPKβ, PGC-1α, and SIRT3 in sciatic nerve were determined by real-time polymerase chain reaction (Real-time PCR). ResultCompared with the normal group, fasting blood glucose in the model group was increased at each time point (P<0.01). The mechanical pain threshold was decreased (P<0.05), and the incubation time of the hot plate was extended (P<0.01). MNCV, SNCV, and nerve blood flow velocity decreased (P<0.05). The expression level of SOD was decreased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were increased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were decreased (P<0.01). The structure of sciatic nerve fibers in the model group was loose, and the arrangement was disordered. The demyelination change was obvious. Compared with the model group, the fasting blood glucose of rats in the high dose Tangbikang granule group was decreased after the intervention of eight weeks and 12 weeks (P<0.01). The mechanical pain threshold increased (P<0.05). The incubation time of the hot plate was shortened (P<0.01). MNCV, SNCV, and Flux increased (P<0.05). The expression level of SOD was increased (P<0.01). The expression levels of MDA, IL-1β, and TNF-α were decreased (P<0.01). The mRNA expression levels of AMPKα, AMPKβ, PGC-1α, and SIRT3 were increased (P<0.01). The sciatic nerve fibers in the high-dose Tangbikang granule group were tighter and more neatly arranged, with only a few demyelinating changes. The high, medium, and low dose Tangbikang granule groups showed a significant dose-effect trend. ConclusionTangbikang granules may improve sciatic nerve function in diabetic rats by regulating AMPK/PGC-1α/SIRT3 signaling pathway partly to inhibit oxidative stress.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 45-53, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003765

RESUMEN

ObjectiveTo explore the protective mechanism of paeoniflorin on mice with ulcerative colitis (UC) through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) autophagy pathway. MethodUC mouse model was established by allowing mice freely drink 4% DSS, and 56 BALB/c male mice were randomly divided into model group, AMPK inhibitor group (20 mg·kg-1), paeoniflorin (50 mg·kg-1) + inhibitor (20 mg·kg-1) group, and high dose (50 mg·kg-1), medium dose (25 mg·kg-1), and low dose (12.5 mg·kg-1) paeoniflorin groups. After seven days of drug intervention, the protective effect of paeoniflorin on mice with UC was determined by comparing the body weight, disease activity index (DAI) changes, and Hematoxylin-eosin (HE) staining results. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum of mice in each group, and immunofluorescence was utilized to detect microtubule-associated protein 1 light chain 3 (LC3) content in the colon, AMPK, mTOR proteins, and their phosphorylated proteins including p-AMPK and p-mTOR in the colon tissue were detected by Western blot, and the mRNA expression levels of AMPK, mTOR, Beclin1, LC3, and p62 were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the model group showed a decrease in body mass, an increase in DAI score, and severe pathological damage to the colon. The levels of inflammatory factors including TNF-α and IL-6 increased in serum (P<0.01), while the protein levels of LC3 and p-AMPK/AMPK were down-regulated in colon tissue, and those of p-mTOR/mTOR were up-regulated (P<0.01). The mRNA expression levels of AMPK and LC3 were down-regulated, while the mRNA expression levels of mTOR and p62 were up-regulated (P<0.01). Compared with the model group and the paeoniflorin + inhibitor group, the mice treated with paeoniflorin showed an increase in body mass, a decrease in DAI score, a reduction in pathological damage to colon tissue, and a reduction in the levels of inflammatory factors of TNF-α and IL-6 in serum (P<0.05). The protein levels of LC3 and p-AMPK/AMPK in colon tissue were up-regulated, while the protein levels of p-mTOR/mTOR were down-regulated (P<0.01). The mRNA expression levels of AMPK, Beclin1, and LC3 were up-regulated, while the mRNA expression of mTOR and p62 were down-regulated (P<0.01). The colon tissue of the inhibitor group was severely damaged, and the trend of various indicators was completely opposite to that of the high dose paeoniflorin group. ConclusionPaeoniflorin can enhance autophagy and reduce inflammatory damage in mice with UC by activating the AMPK/mTOR signaling pathway and thus play a protective role.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-9, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003760

RESUMEN

ObjectiveTo investigate the effects of Linggui Zhugantang on mitochondrial fission and fusion and silencing information regulator 3(Sirt3)/adenosine monophosphate dependent protein kinase (AMPK) signaling pathway in chronic heart failure (CHF) rats after myocardial infarction (MI). MethodSD rats randomly divide into sham operation group (normal saline ,thread only without ligature), model group (normal saline, ligation of the left anterior descending coronary artery proximal to the heart), Linggui Zhugantang group (4.8 g·kg-1) and Captopril group (0.002 57 g·kg-1), with 10 rats in each group. Administere drug continuously for 28 days. Echocardiography detected cardiac function parameters. Hematoxylin eosin (HE) staining observed the pathological changes of the heart. Immunofluorescence detected the levels of reactive oxygen species (ROS). JC-1 detect mitochondrial membrane potential. Colorimetry measure adenosine triphosphate (ATP), superoxide dismutase (SOD), malondialdehyde (MDA), mitochondrial respiratory chain complex activity (Ⅰ-Ⅳ). TdT-mediated dUTP nick end labeling (TUNEL) staining detected the apoptosis rate of myocardial tissue. Western blot detected protein expression levels of Sirt3, phosphorylated AMPK (p-AMPK), phosphorylated dynamic-related protein 1(p-Drp1), mitochondrial fission protein 1(Fis1), mitochondrial fission factor (MFF), optic atrophy protein 1(OPA1). ResultCompared to the sham group, the left ventricular end diastolic diameter (LVIDd) and left ventricular end systolic diameter (LVIDs) were significantly increased in model group (P<0.01), while the left ventricular short axis shortening rate (LVFS) and left ventricular ejection fraction (LVEF) were significantly decreased (P<0.01). There were inflammatory cell infiltration and obvious pathological injury in myocardial tissue. ROS, MDA levels and myocardial cell apoptosis rate were significantly increased (P<0.01), SOD level, ATP content, and membrane potential were significantly decreased (P<0.01). The activity of mitochondrial respiratory chain complexes (Ⅰ-Ⅳ) was significantly decreased (P<0.01). Levels of p-Drp1, Fis1, MFF proteins were significantly up-regulated (P<0.01), while Sirt3, p-AMPK, OPA1 proteins level were significantly down-regulated (P<0.01). Compared with model group, LVIDd and LVIDs were significantly decreased (P<0.01), LVEF and LVFS were significantly increased (P<0.01). Inflammatory cell infiltration and pathological damage of myocardial tissue were significantly relieved. ROS, MDA levels and myocardial cell apoptosis rate were significantly decreased in Linggui Zhugantang group and Captopril group (P<0.01), SOD level, ATP content, and membrane potential significantly increased (P<0.01). The activity of mitochondrial respiratory chain complexes (Ⅰ-Ⅳ) increased significantly (P<0.01),and p-Drp1, Fis1, MFF protein levels were significantly down-regulated (P<0.01), Sirt3, p-AMPK, OPA1 protein were significantly up-regulated (P<0.01). ConclusionLinggui Zhugantang can alleviate oxidative stress and apoptosis damage of myocardial cells, maintain mitochondrial function stability, and its effect may be related to mitochondrial mitosis fusion and Sirt3/AMPK signaling pathway.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 110-117, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003414

RESUMEN

ObjectiveTo observe the effects of Hirudo, Notoginseng Radix et Rhizoma, and drug pair on renal pathological morphology and protein phosphatase 2A (PP2A)/adenylate activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway in rats with chronic renal failure (CRF). MethodThe 55 male SD rats were randomly divided into a normal group (n=11) and a modeling group (n=44). The normal group was fed conventionally, and the modeling group was given 0.25 g·kg-1·d-1 adenine by gavage for 28 days to replicate the CRF model. After successful modeling, rats were randomly divided into model group, Hirudo group (3 g·kg-1·d-1), Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), and Hirudo + Notoginseng Radix et Rhizoma group (3 g·kg-1·d-1), with 9 rats in each group. The normal group and model group were given a constant volume of normal saline by intragastric administration for 30 days. At the end of the experiment, the levels of serum creatinine (SCr) and urea nitrogen (BUN) in all groups were measured. The renal pathological morphology changes were observed by hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy. The mRNA expressions of PP2A, AMPK, and mTOR were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of PP2A, AMPK, phosphorylation(p)-AMPK, mTOR, and p-mTOR in renal tissue were detected by Western blot. ResultCompared with the normal group, the renal pathological structure changes were obvious, and the levels of SCr and BUN were significantly increased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression were significantly increased, and the p-AMPK/AMPK was significantly decreased in the model group (P<0.05). Compared with the model group, the renal pathological morphology changes were significantly improved, and the levels of SCr and BUN were significantly decreased. The mRNA expression of PP2A, protein expression of PP2A, and p-mTOR/mTOR expression in the renal tissue were significantly decreased, and the p-AMPK/AMPK was significantly increased (P<0.05) in all groups after drug intervention. In addition, the effect in the Hirudo+Notoginseng Radix et Rhizoma group was better. The mRNA expression levels of AMPK and mTOR in the renal tissue were not significantly different among the normal group, model group, and other groups. ConclusionThe efficacy of Hirudo and Notoginseng Radix et Rhizoma pairs in improving renal fibrosis in rats with CRF is significantly better than that of the single drug, and its improvement on renal fibrosis in rats with CRF may be related to the regulation of PP2A/AMPK/mTOR signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-16, 2024.
Artículo en Chino | WPRIM | ID: wpr-1003403

RESUMEN

ObjectiveTo investigate the regulatory effect of Danggui Shaoyaosan on adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase-1 (ULK1) signaling pathway in the rat model of metabolism-associated fatty liver disease (MAFLD). MethodSixty SD rats were randomized into control, model, western medicine (polyene phosphatidylcholine capsules,0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, 9.76 g·kg-1, respectively) Danggui Shaoyaosan groups. After being fed with a high-fat diet for 8 weeks, the rats in each group were administrated with corresponding drugs for 4 weeks. At the end of drug treatment, serum and liver tissue were collected for subsequent determination of related indicators. ResultCompared with the control group, the model group showed increased contents of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the serum, increased contents of TC, TG, and free fatty acids (FFAs) in the liver (P<0.01), and decreased content of high-density lipoprotein cholesterol (HDL-C) in the serum (P<0.01). Furthermore, the model group showed down-regulated protein levels of p-AMPK, microtubule-associated protein 1 light chain 3B (LC3B) Ⅱ, Beclin1, and ULK1 (P<0.01) and up-regulated protein levels of p-mTOR and ubiquitin-binding protein p62 in the liver (P<0.01). The hepatic steatosis was obvious and the NAFLD activity score (NAS) and oil red O staining area increased in the model group, (P<0.05, P<0.01). Compared with the model group, Danggui Shaoyaosan reduced the contents of TC and TG and the activities of ALT and AST in the serum, lowered the levels of TC, TG, and FFA in the liver, down-regulated the protein levels of p-mTOR and p62 (P<0.01), elevated the serum HDL-C level, and up-regulated the protein levels of p-AMPK, LCBⅡ, Beclin1, and ULK1 in the liver (P<0.05, P<0.01). Moreover, it alleviated hepatic steatosis and decreased the NAS and oil red O staining area (P<0.05, P<0.01). ConclusionDanggui Shaoyaosan has therapeutic effect on MAFLD rats by regulating AMPK/mTOR/ULK1 signaling pathway to enhance autophagy.

6.
Journal of Traditional Chinese Medicine ; (12): 205-212, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005372

RESUMEN

ObjectiveTo investigate the possible mechanism of Guben Fangxiao Beverage (固本防哮饮) for the prevention and treatment of chronic airway inflammation during asthma remission. MethodsThirty-six female Balb/c mice were randomly divided into normal group, model group, low-, medium-, and high-dose of Guben Fangxiao Beverage group and montelukast sodium group, with 6 mice in each group. Except for the normal group, ovalbumin and respiratory syncytial virus were used in other groups to establish a mouse model of bronchial asthma in remission stage. After molding, the low-, medium-, and high-dose groups of Guben Fangxiao Beverage were respectively given 12, 24, and 36 g/(kg·d), the montelukast sodium group was given montelukast sodium granule 2.6 mg/(kg·d), and the mice in the normal group and model group were given 20 ml of double-distilled water, all by gavage, once a day for 28 days. The levels of interleukin 4 (IL-4) and interleukin 5 (IL-5) in the lung tissue of mice were detected; HE staining was used to observe the pathology of the lung tissue and to score the inflammation; DHE staining was used to observe the level of reactive oxygen species (ROS) in the lung tissue, and the activities of mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ in the lung tissue were detected; the levels of serum superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and adenosine triphosphate (ATP) were detected; the protein expression levels of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1 (HO-1) and cAMP responsive element binding protein (CREB) in the lung tissues of the model group were detected by Western blot. ResultsCompared with the normal group, the histopathological results of the lungs of mice in the model group showed an increase in inflammatory cells around the airways and an increase in inflammatory score; DHE staining showed an increase in the level of ROS, and an increase in the levels of IL-4 and IL-5 in the lung tissues; the levels of serum SOD, CAT, and ATP were reduced, and the level of MDA was elevated; the activities of the mitochondrial respiratory chain complexes Ⅰ, Ⅱ, Ⅲ, Ⅳ, and Ⅴ of the lung tissues were reduced, and the activities of p-AMPK, Nrf2, CREB protein expression decreased (P<0.05). Compared with the model group, the lung tissue inflammatory cells and inflammation scores of mice in each Guben Fangxiao Beverage dose group and montelukast sodium group were reduced; the levels of ROS, IL-4 and IL-5 in the lung tissue were reduced; the levels of CAT and ATP in the serum increased, and the content of MDA was reduced; and the activities of mitochondrial respiratory chain complexes Ⅰ and Ⅱ, as well as the expression of CREB protein, were elevated in the lung tissue (P<0.05). Compared with the high-dose group, the MDA level of the medium-dose Guben Fangxiao Beverage group decreased (P<0.05). The activity of mitochondrial respiratory chain complex V in the medium-dose group was higher than that in the montelukast sodium group, and the activity of mitochondrial respiratory chain complex Ⅳ in the medium- and high-dose groups was higher than that in the low-dose group (P<0.05). ConclusionGuben Fangxiao Beverage can inhibit oxidative stress and improve mitochondrial function to relieve chronic airway inflammation in bronchial asthma model mice during asthma remission, and its mechanism may be related to the activation of AMPK/Nrf2/HO-1 signaling pathway.

7.
China Pharmacy ; (12): 807-812, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013541

RESUMEN

OBJECTIVE To explore the improvement mechanism of proanthocyanidins on acute kidney injury (AKI) induced by gentamicin in rats. METHODS Gentamicin sulfate was injected intraperitoneally to construct the AKI rat model; the model rats were randomly divided into model control group, benazepril hydrochloride 5 mg/kg group (positive control), proanthocyanidins 50 mg/kg group, proanthocyanidins 100 mg/kg group, and proanthocyanidins 200 mg/kg group, with 10 rats in each group; in addition, 10 normal rats were selected to be treated as the normal control group. The rats in each administration group were given corresponding liquid intragastrically, and the normal control group and model control group were given equal volumes of normal saline intragastrically, once a day, for 28 consecutive days. After the last administration, the levels of serum creatinine (SCr), blood urea nitrogen (BUN), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and 24 h urinary protein (UP) were detected; the renal index was calculated; the pathological changes of renal tissue were observed and the pathological score was calculated; the apoptotic rate of cells in renal tissue and the expression levels of Caspase-3 and Bcl-2 associated X protein (Bax), as well as the phosphorylation levels of silent information regulator of transcription 1 (SIRT1) and AMP-activated protein kinase (AMPK) were detected. RESULTS Compared with the model control group, the levels of SCr, BUN, UP and MDA, the renal index, the pathological score of renal tissue, the apoptotic rate of cells in renal tissue, the protein expression levels of Caspase-3 and Bax in renal tissue of rats in each administration group were decreased significantly; SOD and GSH-Px levels, phosphorylation levels of SIRT1 and AMPK protein were increased significantly (P<0.05), and the effect of proanthocyanidins was in a dose-dependent manner (P<0.05). There were no significant differences in the above indexes between proanthocyanidins 200 mg/kg group and benazepril hydrochloride 5 mg/kg group (P>0.05). CONCLUSIONS The improvement effect of proanthocyanidins on AKI rats may be related to the activation of SIRT1/AMPK signaling pathway to inhibit oxidative stress.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 49-56, 2024.
Artículo en Chino | WPRIM | ID: wpr-1012692

RESUMEN

ObjectiveTo explore the effect and mechanism of Qizhu prescription on liver lipid anabolism and oxidative stress in mice with non-alcoholic steatohepatitis (NASH) based on adenylate activated protein kinase (AMPK) signaling pathway. MethodA total of 60 male C57BL/6J mice were randomly divided into a normal group (n = 10) and a modeling group (n = 50). The modeling group was fed by high-fat and high-cholesterol diet for 16 weeks to establish the NASH mice model and was randomly divided into model group, low-, medium, and high-dose groups of Qizhu prescription, and Yishanfu group, with 10 mice in each group. Qizhu prescription was administered intragastrically once a day at a dose of 4.75, 9.50, and 19.00 g·kg-1 in each group and 228 mg·kg-1 in Yishanfu group. The normal group and model group were given equal volumes of pure water for eight weeks. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), triglyceride (TG), and glucose (GLU) levels were detected. The pathological changes of liver tissue were observed by hematoxylin-eosin (HE) and oil red O staining. Serum levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), free fatty acids (FFA), reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of acetyl-CoA carboxylase (ACC), carnitine palmitoyl transferase 1A(CPT1A), and mitochondrial uncoupling protein 2 (UCP2) were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). Protein expression levels of AMPK, p-AMPK, ACC, CPT1A, and UCP2 in liver tissue were detected by Western blot. ResultCompared with the normal group, the liver steatosis of the model group was obvious, with multiple inflammatory clusters and large amounts of intracellular lipid deposition. The activity of serum AST, ALT, as well as levels of IL-6, IL-1β, TNF-α, FFA, and MDA were significantly increased, the activity of CAT and SOD was significantly decreased, and the mRNA and protein expressions of ACC were significantly increased. The mRNA and protein expressions of CPT1 and UCP2 were significantly decreased, and the protein expression of p-AMPK was significantly decreased (P<0.01). Compared with the model group, the degree of liver steatosis in the Qizhu prescription and Yishanfu groups was reduced, the activity of AST and ALT, as well as the levels of IL-6, IL-1β, TNF-α, FFA, and MDA was significantly decreased, and the activity of CAT and SOD was significantly increased (P<0.01). The mRNA and protein expressions of ACC in liver tissue of mice in medium- and high-dose groups of Qizhu prescription were significantly decreased, while the mRNA and protein expressions of CPT1A and UCP2, as well as p-AMPK protein were significantly increased (P<0.01). ConclusionQizhu prescription can improve liver lipid metabolism, reduce oxidative stress, and promote liver cell repair in NASH mice by activating the AMPK signaling pathway.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 41-48, 2024.
Artículo en Chino | WPRIM | ID: wpr-1012691

RESUMEN

ObjectiveTo investigate the role and mechanism of total saponins of Dioscorea (TSD) in mitigating nonalcoholic steatohepatitis (NASH) in mice. MethodForty-eight C57BL/6J mice were randomized into a normal group and a modeling group. The mice for modeling were fed with a high-fat and high-cholesterol diet + 20% fructose solution for 16 weeks and randomized into model, atorvastatin (4 mg·kg-1·d-1), and high-, medium-, and low-dose (200, 60, and 20 mg·kg-1·d-1) TSD groups. The mice were administrated with corresponding doses of drugs by gavage for 8 weeks. The mouse activity, liver index, levels of total cholesterol (TC), triglycerides (TG), and free fatty acids (FFAs) in the liver, and levels of TC, TG, aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (GGT), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the serum were measured. Hematoxylin-eosin staining, Masson staining, oil red O staining, and transmission electron microscopy were employed to observe the pathological changes, lipid accumulation, and morphological changes of liver ultrastructure. Western blot was employed to determine the protein levels of AMP-activated protein kinase (AMPK), sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and phosphorylated ACC (p-ACC) in the liver tissue. ResultCompared with the normal group, the activity of mice in the model group decreased(P<0.05, P<0.01), the levels of TC, TG, FFA and serum TC, TG, ALT, AST, GGT, IL-1β and TNF-α, liver coefficient and liver pathology scores were significantly increased, the expression of p-AMPK/AMPK and p-ACC proteins in liver tissues was significantly reduced, and the expressions of SREBP-1c and ACC proteins were significantly increased (P<0.01). Compared with the model group, atorvastatin increased the mouse activity (P<0.05), while each dose of TSD caused no significant changed in the mouse activity. The levels of TC, TG, FFA in liver and serum TC, TG, ALT, AST, GGT, IL-1β, TNF-α, liver coefficient and liver pathological score in TSD and atorvastatin groups were significantly decreased, and the expressions of p-AMPK/AMPK and p-ACC in liver tissue were significantly increased. The expressions of SREBP-1c and ACC were significantly decreased (P<0.05,P<0.01). ConclusionTSD may alleviate NASH in mice by regulating the AMPK/SREBP-1c/ACC signaling pathway to reduce lipid synthesis.

10.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-16, 2024.
Artículo en Chino | WPRIM | ID: wpr-1012687

RESUMEN

ObjectiveThis study aims to examine the effect of Rhei Radix et Rhizoma-Coptidis Rhizoma on reducing insulin resistance in db/db mice by regulating the adenylate activated protein kinase (AMPK)/UNC-51-like kinase 1 (ULK1)/key molecule of autophagy, benzyl chloride 1 (Beclin1) pathway and elucidate the underlying mechanism. MethodSixty 6-week-old male db/db mice were studied. They were randomly divided into the model group, metformin group (0.26 g·kg-1), and low-, middle-, and high-dose groups (2.25, 4.5, 9 g·kg-1) of Rhei Radix et Rhizoma-Coptidis Rhizoma. A blank group of db/m mice of the same age was set, with 12 mice in each group. After eight weeks of continuous intragastric administration, the blank group and model group received distilled water intragastrically once a day. The survival status of the mice was observed, and fasting blood glucose (FBG) was measured using a Roche blood glucose device. Fasting serum insulin (FINS) was measured using an enzyme-linked immunosorbent assay, and the insulin resistance index (HOMA-IR) was calculated. Hematoxylin-eosin (HE) staining was performed to observe the pathological changes in the liver of the mice. The protein expression levels of AMPK, Beclin1, autophagy associated protein 5 (Atg5), and p62 in liver tissue were determined by using Western blot. The protein expression levels of autophagy associated protein 1 light chain 3B (LC3B) and ULK1 in liver tissue were determined using immunofluorescence. Real-time fluorescence quantitative PCR (Real-time PCR) was used to measure mRNA expression levels of AMPK, Beclin1, Atg5, ULK1, and p62. ResultCompared with the blank group, the model group exhibited a significant increase in body mass (P<0.01). Additionally, the levels of FBG, FINS, and HOMA-IR significantly changed (P<0.01). The structure of liver cells was disordered. The protein expression levels of AMPK, Beclin1, and Atg5 in liver tissue were significantly decreased (P<0.01), while the expression level of p62 protein was significantly increased (P<0.01). The expression levels of mRNA and proteins were consistent. Compared with the model group, the body mass of the metformin group and high and medium-dose groups of Rhei Radix et Rhizoma-Coptidis Rhizoma was significantly decreased (P<0.05). FBG, FINS, and HOMA-IR were significantly decreased (P<0.05,P<0.01). After treatment, the liver structure damage in each group was alleviated to varying degrees. The protein expressions of AMPK, Beclin1, Atg5, LC3B, and ULK1 were increased (P<0.05,P<0.01), while the protein expression of p62 was decreased (P<0.01). The expression levels of mRNA and proteins were generally consistent. ConclusionThe combination of Rhei Radix et Rhizoma-Coptidis Rhizoma can effectively improve liver insulin resistance, regulate the AMPK autophagy signaling pathway, alleviate insulin resistance in db/db mice, and effectively prevent the occurrence and development of type 2 diabetes.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 247-255, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011465

RESUMEN

Insulin resistance (IR) is an important pathological and physiological mechanism of type 2 diabetes (T2DM), and the treatment of IR has become the key to the prevention and treatment of T2DM. IR is a state of insensitivity or reduced sensitivity of insulin-stimulated tissue cells to glucose, resulting in cells that are unable to efficiently take up glucose in the bloodstream and thus causing hyperglycemia. Adenosine monophosphate-activated protein kinase (AMPK) is an energy-sensing enzyme that can regulate multiple metabolic pathways and maintain the stability of adenosine triphosphate (ATP) in the cell. In recent years, traditional Chinese medicine (TCM) has played an increasingly important role in the prevention and treatment of T2DM. The research on exploring the AMPK signaling pathway of TCM intervention in the progress of T2DM has gradually increased. Many pharmacological studies have shown that TCM has advantages such as safety and high efficiency in the prevention and treatment of T2DM. AMPK signaling pathway is one of the key pathways for the active ingredients of TCM and TCM extracts to improve IR. Active ingredients such as phenols, flavonoids, polysaccharides, alkaloids, and saponins, as well as other herbal extracts can improve IR by activating the AMPK signaling pathway cascade response, thereby improving IR by regulating glucolipid metabolism, inhibiting inflammatory response, anti-oxidative stress and maintaining mitochondrial homeostasis. Based on this, this paper reviews the pharmacological and experimental research results of TCM intervening the AMPK signaling pathway to improve IR in recent years, expecting to provide reference for further research, development and application of TCM in intervening IR and treating T2DM.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 272-282, 2023.
Artículo en Chino | WPRIM | ID: wpr-953949

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with complex and diverse pathogenesis, and there is no effective treatment or specific drugs for its clinical treatment. In recent years, its incidence has been on the rise, and it has become the earnest expectation of medical researchers in China and abroad that related patients could be treated. AMP-activated protein kinase (AMPK) functions to regulate cellular energy homeostasis and mitochondrial homeostasis. When activated, it has a good intervention effect on NAFLD progression with lipid metabolism disorders and mitochondrial homeostasis disorders. For NAFLD, the activation of AMPK can inhibit the production of new lipogenesis in the liver, promote the oxidation of fatty acids in the liver, and enhance the mitochondrial function of adipose tissues. As a key target of metabolic diseases, AMPK can also improve apoptosis, liver fibrosis, autophagy, and inflammation. Traditional Chinese medicine (TCM) is good at treating diseases from multiple targets and multiple pathways and is also commonly used in the treatment of chronic liver disease in clinical practice. A large number of in vitro and in vivo experimental studies on NAFLD have shown that TCM monomers have good prospects for the treatment of NAFLD through the AMPK signaling pathway, including glycosides, phenols, alkaloids, flavonoids, quinones, terpenoids, and lignans, which are natural activators of AMPK. This study reviewed the research progress on TCM monomers in regulating the AMPK pathway to prevent and treat NAFLD, providing a broader perspective for TCM treatment of NAFLD.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 91-98, 2023.
Artículo en Chino | WPRIM | ID: wpr-965652

RESUMEN

ObjectiveTo explore the effect of Tangbikang granules (TBK) on sciatic nerve inflammation in diabetic rats through modulation of adenosine monophosphate-activated protein kinase (AMPK)/nuclear factor (NF)-κB pathway. MethodSD rats were fed with high-fat and high-sugar diet for 8 weeks and then treated with streptozotocin (STZ, ip) at 35 mg·kg-1 for modeling. Then the rats were randomized into diabetes group, low-dose (0.625 g·kg-1), medium-dose (1.25 g·kg-1), and high-dose (2.5 g·kg-1) TBK groups, and lipoic acid group (0.026 8 g·kg-1) according to body weight and blood glucose level, and a normal group was designed. After modeling, administration began and lasted 12 weeks. The body mass, blood glucose level, and thermal withdrawal latency (TWL) of the rats were detected before treatment and at the 4th, 8th, and 12th week of administration. At the 12th week, the sciatic nerve was collected for hematoxylin-eosin (HE) and Luxol fast blue (LFB) staining, and the structural changes of sciatic nerve were observed under scanning electron microscope. The levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in sciatic nerve were measured by enzyme-linked immunosorbent assay (ELISA), and the levels of AMPK, phosphorylated (p)-AMPK, and NF-κB proteins in the sciatic nerve were measured by Western blot. ResultThe blood glucose concentration and TWL in the model group were higher than those in the normal group at each time point (P<0.01). The levels of IL-1β, TNF-α, and NF-κB protein in sciatic nerve in the model group were higher than those in the normal group (P<0.01), and the p-AMPK/AMPK ratio was smaller than that in the normal group (P<0.01). Compared with the model group, TBK of the three doses lowered the TWL (P<0.05, P<0.01) and the levels of IL-1β, TNF-α, and NF-κB protein in sciatic nerve of rats (P<0.05, P<0.01), and high-dose and medium-dose TBK raised p-AMPK/AMPK (P<0.05, P<0.01). The sciatic nerve fibers were orderly and compact with alleviation of demyelination in rats treated with TBK compared with those in the model group. ConclusionTBK improves the function of sciatic nerve and alleviates neuroinflammation in diabetic rats. The mechanism is the likelihood that it up-regulates the expression of AMPK in the AMPK/NF-κB pathway and inhibits the expression of downstream NF-κB, thereby alleviating the neuroinflammation caused by high levels of inflammatory factors such as IL-1β and TNF-α due to NF-κB activation.

14.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 203-213, 2023.
Artículo en Chino | WPRIM | ID: wpr-964961

RESUMEN

ObjectiveTo observe the effect of salvianolate on the protein expressions of adenosine monophosphate (AMP)-activated protein kinase (AMPK), silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), autophagy and apoptosis in kidney tissue of rats with membranous nephropathy (MN), and to explore its possible molecular mechanism against MN. MethodEighty male SD rats were randomly divided into normal group, model group, benazepril hydrochloride group (10 mg·kg-1), and salvianolate low-, medium-, and high-dose groups (16.7, 33.3 and 66.7 mg·kg-1). The rats were modeled by injection of cationized bovine serum albumin (C-BSA) into the tail vein. After successful modeling, rats in the administration groups were given corresponding doses of drugs for 4 consecutive weeks, and then 24-hour urine, serum and kidney tissue were collected for the detection of 24-hour urinary protein (UTP), blood urea nitrogen (BUN), serum creatinine (SCr), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C reactive protein (CRP), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and malondialdehyde (MDA). The pathological changes of kidneys were observed by light microscope, electron microscope and immunofluorescence. Western blot was used to detect the protein expressions of phospho-AMPK (p-AMPK), AMPK, phospho-SIRT1 (p-SIRT1), SIRT1 and PGC-1α in rat kidney tissue. The protein expressions of autophagy-specific gene (Beclin-1), microtubule-associated protein 1 light chain 3 (LC3) Ⅱ, ubiquitin-binding protein (p62), B cell lymphoma (Bcl-2), Bcl-2-associated X (Bax), and cysteine aspartic protease-7 (Caspase-7) in rat kidney tissue were determined by immunohistochemistry (IHC). ResultCompared with the conditions in the normal group, the levels of UTP, IL-6, TNF-α, CRP and MDA in the model group were increased (P<0.05) while the levels of SOD and GSH-Px were decreased (P<0.05), and there was no difference in BUN and SCr. Compared with the model group, the administration groups had lowered UTP, IL-6, TNF-α, CRP and MDA (P<0.05) while elevated SOD and GSH-Px (P<0.05). It could be seen from hematoxylin and eosin (HE) staining, Masson staining, immunofluorescence and electron microscopy that the pathological damage of rat kidney tissue in the model group was significant, but after treatment with benazepril hydrochloride and salvianolate, the pathological damage of kidney cells was gradually improved. The expressions of p-AMPK/AMPK, p-SIRT1/SIRT1, PGC-1α, Bcl-2, Beclin-1 and LC3Ⅱ in rat kidney in the model group were lower than those in the normal group (P<0.05) while the expressions of Bax, Caspase-7 and p62 were higher (P<0.05). Compared with the model group, benazepril hydrochloride group and salvianolate groups had an up-regulation in the expressions of p-AMPK/AMPK, p-SIRT1/SIRT1, PGC-1α, Bcl-2, Beclin-1 and LC3Ⅱ in the kidney (P<0.05) while a down-regulation in the expressions of Bax, Caspase-7 and p62 (P<0.05). ConclusionThe protective effect of salvianolate on the kidneys of MN rats may be related to the activation of AMPK/SIRT1/PGC-1α signaling pathway, the up-regulation of autophagy and the reduction of apoptosis.

15.
Journal of Experimental Hematology ; (6): 1486-1491, 2023.
Artículo en Chino | WPRIM | ID: wpr-1010001

RESUMEN

OBJECTIVE@#To investigate the role of platelet-rich plasma (PRP) in inducing the M2 macrophage polarization via regulating AMPK singling pathway.@*METHODS@#The expressions of M1 marker CD11c and M2 marker CD206 in macrophages of blank control group, LPS group, LPS+PRP group, and LPS+PRP+Compound C group were detected by flow cytometry. Western blot was used to observe the effects of PRP on the expression of AMPK-mTOR signaling pathway-related proteins at different times (12 h, 18 h and 24 h) after LPS treatment. RNA interference technology was used to silence the expression of AMPK in macrophages, and the expression of TGF-β protein was subsequently examined by Western blot.@*RESULTS@#LPS significantly reduced the expression of CD206 and increased the expression of CD11c (P <0.05). After the addition of PRP, the expression of CD206 was significantly increased (P <0.05), while the expression of CD11c was significantly decreased (P <0.05). Compared with LPS group, PRP treatment significantly increased the expressions of p-AMPK and p-ULK1 proteins at 12 h, 18 h and 24 h, while significantly decreased the expression of p-mTOR protein (P <0.05). After the addition of AMPK inhibitor Compound C, the expression of CD206 was significantly reduced (P <0.05) and the expression of CD11c was significantly increased compared with LPS+PRP group (P <0.05). After silencing the expression of AMPK in macrophages, the promotion effect of PRP on TGF-β was significantly reduced (P <0.05).@*CONCLUSION@#PRP can stimulate the transformation of macrophages to M2 type via AMPK signalling pathway.


Asunto(s)
Humanos , Proteínas Quinasas Activadas por AMP/farmacología , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Plasma Rico en Plaquetas/metabolismo
16.
Chinese Acupuncture & Moxibustion ; (12): 53-59, 2023.
Artículo en Chino | WPRIM | ID: wpr-969947

RESUMEN

OBJECTIVE@#To observe the hypoglycemic effect of electroacupuncture (EA) at "Tianshu" (ST 25) combined with metformin on rats with type 2 diabetes mellitus (T2DM) as well as its effect on expression of adenosine monophosphate activated protein kinase (AMPK) in liver and pancreas.@*METHODS@#Thirty-six male SD rats were randomly divided into a blank group (6 rats) and a model establishing group (30 rats). The rats in the model establishing group were fed with high-fat diet and treated with intraperitoneal injection of low-dose streptozotocin (STZ) to establish T2DM model. The rats with successful model establishment were randomly divided into a model group, a control group, a metformin group, an EA group and a combination group, 6 rats in each group. The rats in the EA group were treated with EA at "Tianshu" (ST 25), dense-disperse wave, 2 Hz/15 Hz in frequency and 2 mA in current intensity, 20 min each time. The rats in the metformin group were treated with intragastric administration of metformin (190 mg/kg) dissolved in 0.9% sodium chloride solution (2 mL/kg). The rats in the combination group were treated with EA at "Tianshu" (ST 25) and intragastric administration of metformin. The rats in the control group were treated with intragastric administration of 0.9% sodium chloride solution with the same dose. All the treatments were given once a day for 5 weeks. After the intervention, the body mass and random blood glucose were detected; the serum insulin level was detected by ELISA; the expression of AMPK and phosphorylated adenosine monophosphate activated protein kinase (p-AMPK) in liver and pancreas was detected by Western blot method; the expression of protein gene product 9.5 (PGP9.5) was detected by immunofluorescence.@*RESULTS@#①Compared with the blank group, the body mass in the model group was decreased (P<0.05); compared with the model group, the body mass in the EA group and the combination group was decreased (P<0.05); the body mass in the EA group and the combination group was lower than the metformin group (P<0.05). Compared with the blank group, the random blood glucose in the model group was increased (P<0.01); compared with the model group, the random blood glucose in the metformin group, the EA group and the combination group was decreased (P<0.01). The random blood glucose in the combination group was lower than the metformin group and the EA group (P<0.05). ②Compared with the blank group, the insulin level in the model group was decreased (P<0.05); compared with the model group, the insulin level in the metformin group, the EA group and the combination group was all increased (P<0.05). The insulin level in the combination group was higher than the metformin group and the EA group (P<0.05). ③Compared with the blank group, the protein expression of AMPK and p-AMPK in liver tissue was decreased (P<0.05), and the protein expression of AMPK and p-AMPK in pancreatic tissue was increased (P<0.05) in the model group. Compared with the model group, the protein expression of AMPK and p-AMPK in liver tissue in the metformin group, the EA group and the combination group was increased (P<0.05, P<0.01); the protein expression of AMPK in pancreatic tissue in the metformin group was increased (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was decreased (P<0.05); the protein expression of p-AMPK in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05). The protein expression of AMPK and p-AMPK in liver tissue in the combination group was higher than that in the metformin group and the EA group (P<0.05); the protein expression of AMPK in pancreatic tissue in the EA group and the combination group was less than that in the metformin group (P<0.05), and the expression of p-AMPK protein in pancreatic tissue in the combination group was less than that in the metformin group and the EA group (P<0.05). ④Compared with the blank group, the expression of PGP9.5 in pancreatic tissue in the model group was increased (P<0.01); compared with the model group, the expression of PGP9.5 in pancreatic tissue in the metformin group, the EA group and the combination group was decreased (P<0.05, P<0.01). The expression of PGP9.5 in pancreatic tissue in the EA group was lower than the metformin group and the combination group (P<0.05).@*CONCLUSION@#Electroacupuncture at "Tianshu" (ST 25) could promote the effect of metformin on activating AMPK in liver tissue of T2DM rats, improve the negative effect of metformin on AMPK in pancreatic tissue, and enhance the hypoglycemic effect of metformin. The mechanism may be related to the inhibition of pancreatic intrinsic nervous system.


Asunto(s)
Animales , Masculino , Ratas , Puntos de Acupuntura , Proteínas Quinasas Activadas por AMP/genética , Glucemia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Electroacupuntura , Hipoglucemiantes , Insulinas , Metformina , Ratas Sprague-Dawley
17.
Chinese Herbal Medicines ; (4): 421-429, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982521

RESUMEN

OBJECTIVE@#Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD).@*METHODS@#High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism.@*RESULTS@#Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5).@*CONCLUSION@#Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.

18.
Biomedical and Environmental Sciences ; (12): 1028-1044, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1007879

RESUMEN

OBJECTIVE@#To explore whether the protein Deglycase protein 1 (DJ1) can ameliorate Alzheimer's disease (AD)-like pathology in Amyloid Precursor Protein/Presenilin 1 (APP/PS1) double transgenic mice and its possible mechanism to provide a theoretical basis for exploring the pathogenesis of AD.@*METHODS@#Adeno-associated viral vectors (AAV) of DJ1-overexpression or DJ1-knockdown were injected into the hippocampus of 7-month-old APP/PS1 mice to construct models of overexpression or knockdown. Mice were divided into the AD model control group (MC), AAV vector control group (NC), DJ1-overexpression group (DJ1 +), and DJ1-knockdown group (DJ1 -). After 21 days, the Morris water maze test, immunohistochemistry, immunofluorescence, and western blotting were used to evaluate the effects of DJ1 on mice.@*RESULTS@#DJ1 + overexpression decreased the latency and increased the number of platform traversals in the water maze test. DJ1 - cells were cured and atrophied, and the intercellular structure was relaxed; the number of age spots and the expression of AD-related proteins were significantly increased. DJ1 + increased the protein expression of Nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), light chain 3 (LC3), phosphorylated AMPK (p-AMPK), and B cell lymphoma-2 (BCL-2), as well as the antioxidant levels of total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and Glutathione peroxidase (GSH-PX), while decreasing the levels of Kelch-like hydrates-associated protein 1 (Keap1), mammalian target of rapamycin (mTOR), p62/sequestosome1 (p62/SQSTM1), Caspase3, and malondialdehyde (MDA).@*CONCLUSION@#DJ1-overexpression can ameliorate learning, memory, and AD-like pathology in APP/PS1 mice, which may be related to the activation of the NRF2/HO-1 and AMPK/mTOR pathways by DJ1.


Asunto(s)
Animales , Ratones , Enfermedad de Alzheimer/terapia , Proteínas Quinasas Activadas por AMP/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Mamíferos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Presenilina-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
19.
China Journal of Chinese Materia Medica ; (24): 1770-1778, 2023.
Artículo en Chino | WPRIM | ID: wpr-981394

RESUMEN

To investigate the effect of Huazhi Rougan Granules(HZRG) on autophagy in a steatotic hepatocyte model of free fatty acid(FFA)-induced nonalcoholic fatty liver disease(NAFLD) and explore the possible mechanism. FFA solution prepared by mixing palmitic acid(PA) and oleic acid(OA) at the ratio of 1∶2 was used to induce hepatic steatosis in L02 cells after 24 h treatment, and an in vitro NAFLD cell model was established. After termination of incubation, cell counting kit-8(CCK-8) assay was performed to detect the cell viability; Oil red O staining was employed to detect the intracellular lipid accumulation; enzyme-linked immunosorbnent assay(ELISA) was performed to measure the level of triglyceride(TG); to monitor autophagy in L02 cells, transmission electron microscopy(TEM) was used to observe the autophagosomes; LysoBrite Red was used to detect the pH change in lysosome; transfection with mRFP-GFP-LC3 adenovirus was conducted to observe the autophagic flux; Western blot was performed to determine the expression of autophagy marker LC3B-Ⅰ/LC3B-Ⅱ, autophagy substrate p62 and silent information regulator 1(SIRT1)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway. NAFLD cell model was successfully induced by FFA at 0.2 mmol·L~(-1) PA and 0.4 mmol·L~(-1) OA. HZRG reduced the TG level(P<0.05, P<0.01) and the lipid accumulation of FFA-induced L02 cells, while elevated the number of autophagosomes and autophagolysosomes to generate autophagic flux. It also affected the functions of lysosomes by regulating their pH. Additionally, HZRG up-regulated the expression of LC3B-Ⅱ/LC3B-Ⅰ, SIRT1, p-AMPK and phospho-protein kinase A(p-PKA)(P<0.05, P<0.01), while down-regulated the expression of p62(P<0.01). Furthermore, 3-methyladenine(3-MA) or chloroquine(CQ) treatment obviously inhibited the above effects of HZRG. HZRG prevented FFA-induced steatosis in L02 cells, and its mechanism might be related to promoting autophagy and regulating SIRT1/AMPK signaling pathway.


Asunto(s)
Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Autofagia , Hígado
20.
China Journal of Chinese Materia Medica ; (24): 1751-1759, 2023.
Artículo en Chino | WPRIM | ID: wpr-981392

RESUMEN

Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.


Asunto(s)
Ratas , Ratones , Animales , Ratones Obesos , Proteínas Quinasas Activadas por AMP/metabolismo , PPAR gamma/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Obesidad/genética , Peso Corporal , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Lípidos , Colesterol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA