Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
J. venom. anim. toxins incl. trop. dis ; 29: e20230026, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1514465

RESUMEN

Abstract Venomous animals and their venom have always been of human interest because, despite species differences, coevolution has made them capable of targeting key physiological components of our bodies. Respiratory failure from lung injury is one of the serious consequences of envenomation, and the underlying mechanisms are rarely discussed. This review aims to demonstrate how toxins affect the pulmonary system through various biological pathways. Herein, we propose the common underlying cellular mechanisms of toxin-induced lung injury: interference with normal cell function and integrity, disruption of normal vascular function, and provocation of excessive inflammation. Viperid snakebites are the leading cause of envenomation-induced lung injury, followed by other terrestrial venomous animals such as scorpions, spiders, and centipedes. Marine species, particularly jellyfish, can also inflict such injury. Common pulmonary manifestations include pulmonary edema, pulmonary hemorrhage, and exudative infiltration. Severe envenomation can result in acute respiratory distress syndrome. Pulmonary involvement suggests severe envenomation, thus recognizing these mechanisms and manifestations can aid physicians in providing appropriate treatment.

2.
Rev. bras. parasitol. vet ; 28(1): 126-133, Jan.-Mar. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-990809

RESUMEN

Abstract The antitumor properties of ticks salivary gland extracts or recombinant proteins have been reported recently, but little is known about the antitumor properties of the secreted components of saliva. The goal of this study was to investigate the in vitro effect of the saliva of the hard tick Amblyomma sculptum on neuroblastoma cell lines. SK-N-SK, SH-SY5Y, Be(2)-M17, IMR-32, and CHLA-20 cells were susceptible to saliva, with 80% reduction in their viability compared to untreated controls, as demonstrated by the methylene blue assay. Further investigation using CHLA-20 revealed apoptosis, with approximately 30% of annexin-V positive cells, and G0/G1-phase accumulation (>60%) after treatment with saliva. Mitochondrial membrane potential (Δψm) was slightly, but significantly (p < 0.05), reduced and the actin cytoskeleton was disarranged, as indicated by fluorescent microscopy. The viability of human fibroblast (HFF-1 cells) used as a non-tumoral control decreased by approximately 40%. However, no alterations in cell cycle progression, morphology, and Δψm were observed in these cells. The present work provides new perspectives for the characterization of the molecules present in saliva and their antitumor properties.


Resumo As propriedades antitumorais de extratos de glândulas salivares de carrapatos ou proteínas recombinantes foram relatadas recentemente, mas pouco se sabe sobre as propriedades antitumorais dos componentes secretados da saliva. O objetivo deste estudo foi investigar o efeito in vitro da saliva bruta do carrapato duro Amblyomma sculptum sobre as linhagens celulares de neuroblastoma. Células SK-N-SK, SH-SY5Y, Be(2)-M17, IMR-32 e CHLA-20 foram suscetíveis à saliva, com redução de 80% na sua viabilidade em comparação com controles não tratados, como demonstrado pelo ensaio de Azul de Metileno. Investigações posteriores utilizando CHLA-20 revelaram apoptose, com aproximadamente 30% de células positivas para anexina-V, e G0/G1 (> 60%) após tratamento com saliva. O potencial de membrana mitocondrial (Δψm) foi reduzido significativamente (p <0,05), e o citoesqueleto de actina foi desestruturado, como indicado pela microscopia de fluorescência. A viabilidade do fibroblasto humano (células HFF-1), usado como controle não tumoral, diminuiu em aproximadamente 40%. No entanto, não foram observadas alterações na progressão do ciclo celular, morfologia e Δψm nestas células. O presente trabalho fornece novas perspectivas para a caracterização das moléculas presentes na saliva e suas propriedades antitumorais.


Asunto(s)
Animales , Saliva/química , Productos Biológicos/farmacología , Citoesqueleto/efectos de los fármacos , Ixodidae/química , Proteínas de Artrópodos/farmacología , Neuroblastoma/patología , Antineoplásicos/farmacología , Productos Biológicos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas de Artrópodos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación
3.
Indian J Exp Biol ; 2010 Mar; 48(3): 228-237
Artículo en Inglés | IMSEAR | ID: sea-144962

RESUMEN

Plants have been extensively investigated for exploring their therapeutic potentials, but there are comparatively scanty reports on drugs derived from animal kingdom, except for hormones. During last decade, the toxins that are used for defense by the animals, have been isolated and found useful tools for physiological and pharmacological studies, besides giving valuable leads to drug development. Toxins with interesting results have been isolated from the venoms of snakes, scorpions, spiders, snails, lizards, frogs and fish. The present review describe about some toxins as drugs and their biological activities. Some fungal, bacterial and marine toxins have also been covered in this article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA