Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
Acta Pharmaceutica Sinica B ; (6): 319-334, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1011247

RESUMEN

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.

2.
Braz. j. med. biol. res ; 56: e12830, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1520472

RESUMEN

Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a critical respiratory syndrome with limited effective interventions. Lung macrophages play a critical role in the pathogenesis of abnormal inflammatory response in the syndrome. Recently, impaired fatty acid oxidation (FAO), one of the key lipid metabolic signalings, was found to participate in the onset and development of various lung diseases, including ALI/ARDS. Lipid/fatty acid contents within mouse lungs were quantified using the Oil Red O staining. The protective effect of FAO activator L-carnitine (Lca, 50, 500, or 5 mg/mL) was evaluated by cell counting kit 8 (CCK-8) assay, real-time quantitative PCR (qPCR), ELISA, immunoblotting, fluorescence imaging, and fluorescence plate reader detection in lipopolysaccharide (LPS) (100 ng/mL)-stimulated THP-1-derived macrophages. The in vivo efficacy of Lca (300 mg/kg) was determined in a 10 mg/kg LPS-induced ALI mouse model. We found for the first time that lipid accumulation in pulmonary macrophages was significantly increased in a classical ALI murine model, which indicated disrupted FAO induced by LPS. Lca showed potent anti-inflammatory and antioxidative effects on THP-1 derived macrophages upon LPS stimulation. Mechanistically, Lca was able to maintain FAO, mitochondrial activity, and ameliorate mitochondrial dynamics. In the LPS-induced ALI mouse model, we further discovered that Lca inhibited neutrophilic inflammation and decreased diffuse damage, which might be due to the preservation of mitochondrial homeostasis. These results broadened our understanding of ALI/ARDS pathogenesis and provided a promising drug candidate for this syndrome.

3.
Acta Pharmaceutica Sinica ; (12): 2239-2249, 2023.
Artículo en Chino | WPRIM | ID: wpr-999148

RESUMEN

Toll like receptors (TLRs) are the earliest discovered natural immune pattern recognition receptors (PRRs). The abnormality of TLR signal transduction pathway is the key factor leading to chronic inflammatory, cancer, nervous system disease and cardiovascular diseases. The development of TLR agonists and inhibitors has attracted much attention. Currently known TLR2 agonists, such as lipopeptides or their derivatives, have certain limitations in drug development due to their difficult synthesis, easy hydrolysis, and triggering inflammatory cytokine storms, while inhibitors have been rarely reported. New small molecule TLR2 agonists or inhibitors with higher stability are more likely to be developed as tumor immunotherapy or anti-inflammatory drugs.

4.
Journal of Southern Medical University ; (12): 879-888, 2023.
Artículo en Chino | WPRIM | ID: wpr-987000

RESUMEN

OBJECTIVE@#To explore the mechanisms that mediate the anti-inflammatory activity of Eurycoma longifolia.@*METHODS@#Kunming mouse models of xylene-induced ear swelling and lipopolysaccharide (LPS)-induced acute pneumonia were used to compare the anti- inflammatory activities of aqueous and ethanol extracts of Eurycoma longifolia. UPLC-Q-TOF-MS/MS was used to identify the chemical composition in the ethanol extract of Eurycoma longifolia, based on which the potential antiinflammatory targets of Eurycoma longifolia were screened using the databases including SwissADME, SwissTargetPrediction, and Genecards. The String database was used to generate the protein-protein interaction (PPI) network, and Cytoscape was used for network topology analysis and screening the core targets. The enrichment of the core targets was analyzed using Metascape database, the core components and targets were docked with Autodock software, and the docking results were visualized using Pymol software. In a RAW264.7 cell model of LPS-induced inflammation, the Griess reagent was used to measure NO level, and Western blotting was performed to detect the expression levels of MAPK1, JAK2, and STAT3 proteins to verify the anti- inflammatory mechanism of Eurycoma longifolia.@*RESULTS@#The ethanol extract (75%) of Eurycoma longifolia (ELE) was the active site, which contained a total of 37 chemical components. These chemical compounds and diseases had 541 targets, involving the JAK/STAT3, cAMP and other signaling pathways. Twelve indicator components were identified, which all showed good results of molecular docking with two core targets involved in the signaling pathways. In the cell validation experiment, treatment of the cells with low-, medium-, and high-dose ELE significantly reduced NO release in the cells, and ELE at the medium dose significantly decreased the cellular expressions of JAK2 and STAT3.@*CONCLUSION@#The anti-inflammatory activity of Eurycoma longifolia is attributed primarily to its active ingredients bitter lignin and alkaloids, which may regulate the JAK/STAT3 signaling pathway by targeting JAK2 and STAT3.


Asunto(s)
Animales , Ratones , Farmacología en Red , Eurycoma , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Antiinflamatorios/farmacología , Etanol , Extractos Vegetales/farmacología
5.
Chinese journal of integrative medicine ; (12): 1111-1120, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010315

RESUMEN

OBJECTIVE@#To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms.@*METHODS@#3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo.@*RESULTS@#The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01).@*CONCLUSION@#Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.


Asunto(s)
Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos , Pez Cebra , Inhibidor NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Transcripción STAT3/metabolismo , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico
6.
China Journal of Chinese Materia Medica ; (24): 3701-3714, 2023.
Artículo en Chino | WPRIM | ID: wpr-981502

RESUMEN

This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.


Asunto(s)
Antioxidantes/química , Simulación del Acoplamiento Molecular , Artemisia , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Antiinflamatorios/química , Medicamentos Herbarios Chinos/farmacología , Interleucina-6
7.
China Journal of Chinese Materia Medica ; (24): 2757-2766, 2023.
Artículo en Chino | WPRIM | ID: wpr-981379

RESUMEN

In this study, the crude polysaccharides was extracted from Shengfupian and purified by Sevag deproteinization. Then, the purified neutral polysaccharide fragment was obtained by the DEAE-52 cellulose chromatography column and Sephadex G-100 co-lumn. The structure of polysaccharides was characterized by ultraviolet spectroscopy, infrared spectroscopy, ion chromatography, and gel permeation chromatography. To investigate the anti-inflammatory activity of Shengfupian polysaccharides, LPS was used to induce inflammation in RAW264.7 cells. The expression of the CD86 antibody on surface of M1 cells, the function of macrophages, and the content of NO and IL-6 in the supernatant were examined. An immunodepression model of H22 tumor-bearing mice was established, and the immunomodulatory activity of Shengfupian polysaccharides was evaluated based on the tumor inhibition rate, immune organ index and function, and serum cytokine levels. Research indicated that Shengfupian polysaccharides(80 251 Da) was composed of arabinose, galactose, glucose, and fructose with molar ratio of 0.004∶0.018∶0.913∶0.065. It was smooth and lumpy under the scanning electron microscope. In the concentration range of 25-200 μg·mL~(-1), Shengfupian polysaccharides exhibited little or no toxicity to RAW264.7 cells and could inhibit the polarization of cells to the M1 type and reduce the content of NO and IL-6 in the cell supernatant. It could suppress the phagocytosis of cells at the concentration of 25 μg·mL~(-1), while enhancing the phagocytosis of RAW264.7 cells within the concentration range of 100-200 μg·mL~(-1). The 200 mg·kg~(-1) Shengfupian polysaccharides could alleviate the spleen injury caused by cyclophosphamide, increase the levels of IL-1β and IL-6, and decrease the level of TNF-α in the serum of mice. In conclusion, Shengfupian polysaccharides has anti-inflammatory effect and weak immunomodulatory effect, which may the material basis of Aconm Lateralis Radix Praeparaia for dispelling cold and relieving pain.


Asunto(s)
Animales , Ratones , Interleucina-6/genética , Citocinas/metabolismo , Polisacáridos/química , Antiinflamatorios/química , Espectrofotometría Infrarroja
8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 273-282, 2023.
Artículo en Chino | WPRIM | ID: wpr-998188

RESUMEN

Tinosporae Radix, as a traditional Chinese medicinal herb, is the dried root tuber of Tinospora sagittata or T. capillipes. It was first recorded in the Compendium of Materia Medica Supplement in the Qing Dynasty and included in the previous edition of the Chinese Pharmacopoeia. Tinosporae Radix is excavated in autumn and winter and used after removing fibrous roots, washing, and drying. It is indicated for sore throat, carbuncle boils poison, waist and abdominal pain, and various heat syndromes and is commonly used to treat chronic inflammation. Its efficacy is significantly known as “broad-spectrum antibiotics in Zhuang medicine”. Tinosporae Radix is a traditional Chinese medicinal herb often taken by Zhuang and Yao nationalities in Guangxi province and has a wide range of application and development values and research significance. Modern studies have shown that Tinosporae Radix contains diterpenoids, alkaloids, sterols, anthraquinones, glycosides, fatty acids, volatile oils, and other compounds, which have many pharmacological activities such as anti-inflammatory and analgesic, antibacterial and antibacterial, antioxidant, anti-diabetic, and anti-tumor and anti-cancer effects, and it has achieved good efficacy in inhibiting inflammation and treating sore throat and other diseases. In recent years, there have been many research reports on the status, chemical constituents, pharmacological action, clinical application, and quality evaluation of Tinosporae Radix resources, but there is no systematic review and introduction at present. By consulting the literature and combining it with modern research, this paper systematically summarizes and collates Tinosporae Radix resources to provide guidance for the comprehensive development and utilization of Tinosporae Radix resources and subsequent in-depth study.

9.
Chinese Pharmacological Bulletin ; (12): 890-896, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013934

RESUMEN

Aim To investigate the neuroprotective effect of prophylactic administration of salidroside (Sal) on MCAO rats. Methods A total of 52 SD adult male rats were randomly divided into sham operation group (Sham), model group (MCAO) and salidroside pre-administration group (MCAO + Sal). The dose of Sal was 50 mg·kg

10.
Chinese Pharmacological Bulletin ; (12): 161-169, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013893

RESUMEN

Aim To study the potential molecular anti-inflammatory mechanism of Aconitum tanguticum based on network pharmacology methods,molecular docking technology and cell experiment. Methods The active ingredients targets and disease targets of Aconitum tanguticum were collected through literature and database. The common targets were utilized by mixture of them and the core targets were obtained by constructing the protein protein interaction(PPI)network. Then the component-target-disease network diagram was constructed. The gene ontology(GO)analysis and Kyoto encyclopedia of genes and genomes(KEGG)analysis were performed for common targets. AutoDock Vina(1.1.2)software was utilized for combining some of the core targets and the diterpenoid alkaloids in the chemical components of Aconitum tanguticum. Finally,the influence of alcoholic extract of Aconitum tanguticum(ATS)on RAW264.7 cell inflammation model was preliminarily verified by MTT assay,Griess reagent and realtime RT-PCR. Results A total 17 main active ingredients were obtained from literature and 284 common targets were obtained via intersecting with disease targets. Altogether 108 pathways were screened by KEGG enrichment,mainly including PI3K-Akt,Ras,MAPK and HIF-1. Molecular docking results indicated that the active ingredients of Aconitum tanguticum had a high affinity with the core target to be docked. In vitro experiment suggested that ATS treatment inhibited LPS-induced NO production and iNOS mRNA in RAW264.7 cells. Realtime RT-PCR detection suggested that ATS played an anti-inflammatory effect by regulating the PI3K-Akt signaling pathway. Conclusions Aconitum tanguticum exerts anti-inflammatory effects through PI3K-Akt pathways,which provides the scientific basis for better promoting the development of Aconitum tanguticum.

11.
Chinese Pharmacological Bulletin ; (12): 5-8, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013870

RESUMEN

IFIT1 is a highly inducible member of the interferon stimulating gene family (ISGs) with tetrapeptide repeats. It mainly exists in the cytoplasm and is regulated by interferon, a variety of antiviral role through a variety of mechanisms and pathways, and many viruses have evolved unique mechanisms to evade the limiting effects of IFIT1 and thus counter the body' s antiviral immunity, the unique anti-inflammatory effect of IFIT1 has been extensively studied in inflammatory diseases, Therefore, we mainly review the anti-inflammatory and antiviral effects of IFIT1 and the related mechanisms, so as to provide new therapeutic targets and ideas for the treatment of related diseases.

12.
Chinese Pharmacological Bulletin ; (12): 1030-1035, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013777

RESUMEN

Sophoridine is a quinolizidine alkaloid extracted from Sophora in legumes, which is one of the main active ingredients of Sophora alopecuroides L, Sophora flavescentis Ait and Sophora davidii (Franch.) skeels. Its molecular formula is C

13.
Chinese Pharmacological Bulletin ; (12): 1914-1920, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013699

RESUMEN

Aim To explore the protective effects of ganoderma lucidum polysaccharides (GLPS) on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS) and the underlying mechanism. Methods Thirty C57BL/6 mice were randomly divided into three groups: normal control group, EAE model group and GLPS group (5 mg • kg

14.
Acta Pharmaceutica Sinica B ; (6): 3414-3424, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011130

RESUMEN

A new class of potent liver injury protective compounds, phychetins A-D ( 1- 4) featuring an unique 6/6/5/6/5 pentacyclic framework, were isolated and structurally characterized from a Chinese medicinal plant Phyllanthus franchetianus. Compounds 2- 4 are three pairs of enantiomers that were initially obtained in a racemic manner, and were further separated by chiral HPLC preparation. Compounds 1- 4 were proposed to be originated biosynthetically from a coexisting lignan via an intramolecular Friedel-Crafts reaction as the key step. A bioinspired total synthesis strategy was thus designated, and allowed the effective syntheses of compounds 2- 4 in high yields. Some of compounds exhibited significant anti-inflammatory activities in vitro via suppressing the production of pro-inflammatory cytokine IL-1β. Notably, compound 4, the most active enantiomeric pair in vitro, displayed prominent potent protecting activity against liver injury at a low dose of 3 mg/kg in mice, which could serve as a promising lead for the development of acute liver injury therapeutic agent.

15.
Japanese Journal of Complementary and Alternative Medicine ; : 19-23, 2023.
Artículo en Japonés | WPRIM | ID: wpr-1007152

RESUMEN

The anti-inflammatory and anti-oxidant effect of equine placental extract (ePE) on epidermal keratinocytes was examined. ePE reduced mRNA levels of TNF-α (Tumor Necrosis Factor-α) and IL-6 (Interleukin-6) among the inflammatory cytokines released by epidermal keratinocytes after ultraviolet light (UVB: 290-320 nm) exposure. ePE also activated Nrf2, a transcription factor known to be activated by oxidative stress to promote the expression of antioxidant enzymes and suppress inflammation, and it increased the mRNA level of the antioxidant enzyme HO-1 (Heme Oxygenase-1). These results suggest that ePE suppresses UV-induced inflammation of epidermal keratinocytes via activation of Nrf2.

16.
Acta Pharmaceutica Sinica ; (12): 3528-3538, 2023.
Artículo en Chino | WPRIM | ID: wpr-1004654

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the leading chronic liver disease worldwide. NASH is commonly associated with metabolic risk factors, including obesity, hypertension, and diabetes. Hepatic glucose and lipid metabolism disorder, bile acid toxicity, oxidative stress, inflammation, fibrosis, intestinal dysbacteriosis, and susceptibility gene variation are involved in the pathogenesis of NASH. Drug development for NASH has been slow, this article focuses on the clinical research and development of several promising NASH drugs and their mechanisms, such as drugs targeting gut-liver axis, improving metabolism, inhibiting inflammation and fibrosis.

17.
Journal of Pharmaceutical Practice ; (6): 325-328, 2023.
Artículo en Chino | WPRIM | ID: wpr-973692

RESUMEN

Objective To investigate the antioxidant and anti-inflammatory activities of four kinds of Huangshan chrysanthemum. Methods ABTS, FRAP and DPPH were used to detect the antioxidant activities of Huangshan golden silk chrysanthemum, Huangshan chrysanthemum, Huangshan gongju, and Huangshan dendranthema. Their anti-inflammatory activities were evaluated by NF-κB reporter gene assay and rat foot swelling models. Results The outcomes of ABTS,FRAP and DPPH showed that the water extracts of four kinds of chrysanthemum all had certain antioxidant activities and the activities of Huangshan golden silk chrysanthemum were strongest, followed by Huangshan chrysanthemum , Huangshan gongju , and Huangshan dendranthema. Results of NF-κB reporter gene assay and rat foot swelling models showed that four extracts of chrysanthemum morifolium could inhibit the transcription of NF-κB induced by LPS and alleviate foot swelling of rat induced by carrageenan, with the strongest activity of Huangshan chrysanthemum, followed by Huangshan golden silk chrysanthemum, Huangshan gongju, and Huangshan dendranthema. Conclusion The antioxidant activities of Huangshan golden silk chrysanthemum were strongest, followed by Huangshan chrysanthemum, Huangshan gongju, and Huangshan dendranthema. The anti-inflammatory activities of Huangshan chrysanthemum were strongest, followed by Huangshan golden silk chrysanthemum, Huangshan gongju, and Huangshan dendranthema.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 85-93, 2023.
Artículo en Chino | WPRIM | ID: wpr-973136

RESUMEN

ObjectiveTo observe the anti-swelling and analgesic effects of Jianpi Tongluo prescription (JPTL) and to explore its mechanism initially. MethodA total of 120 ICR mice were divided into normal group, model group, JPTL low-, medium- and high-dose groups (5, 10, 20 g·kg-1) and positive drug (celecoxib, 0.03 g·kg-1) group, with 10 in each group (po,once a day). Complete freund's adjuvant (CFA) was used to induce the model of chronic inflammatory pain, and xylene-induced ear swelling test, hot plate test and acetic acid writhing test were performed to observe the anti-swelling and analgesic effects of different doses of JPTL in these four acute and chronic models. Further, enzyme-linked immunosorbent assay (ELISA) was used to detect the expressions of prostaglandin E2 (PGE2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum and inflammatory paw of mice with chronic inflammatory pain, and the expressions of aquaporin 1 (AQP1), aquaporin 3 (AQP3), cyclooxygenase 1 (COX1), cyclooxygenase 2 (COX2) and mitogen-activated protein kinases (MAPKs) in inflammatory paw were detected by Western blot, to explore the preliminary mechanism of JPTL. ResultCompared with the conditions in the normal group, there was a significant increase in the ear swelling of xylene-induced model mice, a shortened paw withdrawal latency in the hot plate test (P<0.01). Compared with the model group, JPTL remarkably increased the inhibition rate of xylene-induced ear swelling (P<0.05, P<0.01), prolonged the latency period of writhing caused by acetic acid and reduced the number of writhing (P<0.05, P<0.01). Compared with normal group, the degree of feet swelling in chronic inflammatory pain mice was significantly increased, the threshold of mechanical pain was decreased and the threshold of cold pain was increased (P<0.05, P<0.01), the protein contents of AQP1 and AQP3 in inflammatory feet were increased, and the contents of IL-1β, IL-6, TNF-α, PGE2 and COX2 in inflammatory feet were increased in serum and/or inflammatory feet. The protein expression levels of p-p38 MAPK, p-JNK and p-ERK in inflammatory feet were increased (P<0.01). Compared with the model group, JPTL relieved paw swelling of mice with chronic inflammatory pain, elevated mechanical withdrawal threshold while decreased cold withdrawal threshold, with analgesia lasting for 4 h and the optimal time point for analgesia being 2 h after administration (P<0.05, P<0.01). Moreover, JPTL down-regulated AQP1, AQP3, COX2, p-p38 MAPK, p-JNK and p-ERK in inflammatory paw of mice with chronic inflammatory pain and reduced IL-1β, IL-6, TNF-α, and PGE2 in serum and/or inflammatory paw, but it had no significant effect on COX1 (P<0.05, P<0.01). ConclusionJPTL has anti-swelling and analgesic effects, and its mechanism is related to inhibiting the production of cytokines and inflammatory mediators via the down-regulation of MAPKs signaling pathway, which provides an experimental basis for the clinical application of JPTL.

19.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 298-307, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982701

RESUMEN

Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as β-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 μmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 μmol·L-1, respectively.


Asunto(s)
Terpenos/farmacología , Viburnum/química , Estructura Molecular , Diterpenos/química , Hojas de la Planta/química
20.
Journal of Integrative Medicine ; (12): 320-323, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982689

RESUMEN

In October 2021, an international collaborative study on the use of electroacupuncture (EA) to treat inflammation was published in the journal Nature by Dr. Qiufu Ma's team. Based on the results of EA on inflammation in the mouse model of lipopolysaccharide inflammatory storm, the study showed that the distal effect of acupuncture can be achieved by "driving the vagus-adrenal axis (through the adrenal medulla, by releasing catecholamines)." PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia but not the abdominal fascia, are crucial for driving this axis. The study suggests the existence of specificity distribution of acupoints, that different EA stimulation intensities or different needle penetration depths have different therapeutic effects, that photosensitive stimulation may be a substitute for needle acupuncture, and that massage, stretching and body movements may also activate PROKR2Cre-markable dorsal root ganglion sensory neurons and elicit anti-inflammatory effects. However, results of some other studies are contrary to the conclusions of Ma's team. For examples: low-intensity EA at GB30 point significantly reduced the inflammation in the rat model of persistent inflammation, which is more relevant to the real daily acupuncture practice, and this effect was partly related to the adrenal cortex and associated with the stimulation of corticosterone and adrenocorticotropic hormone; manual acupuncture (similar to the low-intensity EA) at KI3, Zhichuan point (an extra point), etc. was effective in a severe COVID-19 patient with sepsis; stimulating ST25 with low-intensity EA or manual acupuncture was effective against gastrointestinal inflammations; the above mentioned points are not in an area enriched with PROKR2Cre-marked sensory nerve endings. Evidence shows that the mechanism of EA against inflammation includes modulating multi-systems, multi-levels and multi-targets, which does not limit to "driving the vagus-adrenal axis." Please cite this article as: Fan AY. Anti-inflammatory mechanism of electroacupuncture involves the modulation of multiple systems, levels and targets and is not limited to "driving the vagus-adrenal axis." J Integr Med. 2023; 21(4):320-323.


Asunto(s)
Ratones , Ratas , Animales , Electroacupuntura , COVID-19/terapia , Terapia por Acupuntura , Antiinflamatorios , Inflamación/terapia , Puntos de Acupuntura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA