Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Journal of Zhejiang University. Medical sciences ; (6): 1-14, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1009949

RESUMEN

Tumor cells adaptively reforge their metabolism to meet the demands of energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mtROS, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We expect to explore the core role of mitochondria in the dynamic interplay between the tumor and the host, in order to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 17-25, 2024.
Artículo en Chino | WPRIM | ID: wpr-1012688

RESUMEN

ObjectiveTo preliminarily confirm the effective anti-lung cancer sites of Momordicae Semen and Epimedii Folium and study their mechanism of action. MethodOn the basis of preliminary research, the extraction method of Momordicae Semen and Epimedii Folium was optimized and the effective parts were screened under the guidance of pharmacological effects. Different ethanol elution and water elution sites of Momordicae Semen and Epimedii Folium were obtained through adsorption and elution with D101 macroporous resin. The methylthiazolyldiphenyl-tetrazolium bromide (MTT) colorimetric assay was used to detect the effects of total drug extracts and different elution sites on the proliferation of various tumor cell lines, and to screen for the optimal elution site and tumor sensitive strains. Flow cytometry was used to detect the effect of the elution sites of Momordicae Semen and Epimedii Folium on intracellular reactive oxygen species (ROS) and apoptosis in A549 cells. Western blot was used to compare the expressions of tumor protein 53 (p53), Bcl-2-associated X protein (Bax), cysteinyl aspartate specific proteinase-3 and 9 (Caspase-3 and Caspase-9) proteins in A549 cells. ResultThe inhibitory effect of Momordicae Semen on the proliferation of A549 cells was better than the kernel of Momordicae Semen, with 50% inhibitory concentration (IC50) being (86.83±2.88) mg·L-1 and (95.10±18.13) mg·L-1, respectively. The effect of total extracts of Epimedii Folium on A549 anti proliferation IC50 value was (4.71±0.81) mg·L-1. The IC50 values of the 40%, 60%, and 80% ethanol and anhydrous ethanol eluted macroporous resins of the total extracts of Momordicae Semen and Epimedii Folium inhibiting A549 proliferation were (45.32±4.38)、 (14.95±0.73)、 (17.07±1.76)、 (14.46±2.35)、 (51.7±2.26)、 (12.37±0.67)、 (20.29±0.93)、 and (3.43±0.91) mg·L-1, respectively. Compared with the normal group, the 1∶1 combination of Momordicae Semen and Epimedii Folium inhibited A549 cell proliferation in a time-dependent and concentration-dependent manner. Compared with the normal group, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased intracellular ROS expression (P<0.01). Compared with the normal group, 12.5, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of A549 cell apoptosis (P<0.01). Compared with the normal group, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of p53 in A549 cells (P<0.01). Compared with the normal group, 12.5, 25, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly increased the expression of Bax (P<0.01). Compared with the normal group, 50 mg·L-1 of the combination of Momordicae Semen and Epimedii Folium significantly reduced the expressions of Caspase-3 and Caspase-9 (P<0.01). ConclusionThe anti-tumor effect of Momordicae Semen is better than that of the kernel of Momordicae Semen. The anti-tumor substances of Momordicae Semen and Epimedii Folium mainly concentrate in the 60% ethanol to anhydrous ethanol elution site. A549 cells are sensitive to the 1∶1 combination of Momordicae Semen and Epimedii Folium, which can effectively inhibit the cell proliferation. The mechanism may be related to increasing the generation of ROS in A549 cells, promoting their apoptosis, increasing the expressions of apoptotic proteins such as p53 and Bax, and reducing the expressions of Caspase-3 and Caspase-9.

3.
Acta Pharmaceutica Sinica ; (12): 571-580, 2023.
Artículo en Chino | WPRIM | ID: wpr-965624

RESUMEN

Sphingosine kinase (SphK), sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) are involved in the tumor biological processes such as tumor cell proliferation and migration, and play an important role in the development of cancer. In recent years, researchers have increasingly focused on the interaction between cancer cells and the tumor microenvironment. The tumor microenvironment is genetically stable and can be induced to an antitumor phenotype, which has significant therapeutic advantages. Studies have shown that SphK/S1P/S1PR can regulate multiple aspects of the tumor microenvironment. This review summarizes the effects of SphK and S1P/S1PR signaling on the tumor microenvironment from four perspectives: tumor immune microenvironment, cancer associated fibroblasts, tumor angiogenesis and tumor hypoxic microenvironment, and also outlines potential drug research related to these signal molecules, aiming to elucidate the role of SphK/S1P/S1PR in tumor occurrence and development and provide new ideas for the research of anti-tumor drugs.

4.
Acta Pharmaceutica Sinica ; (12): 721-728, 2023.
Artículo en Chino | WPRIM | ID: wpr-965621

RESUMEN

By using computer-aided drug design, the activities group model which CDK4/6 inhibitors on the market were introduced to silybin C-7, and a series of silybin derivatives were designed and synthesized, and the structure was confirmed by MS, 13C NMR and 1H NMR. The in vitro antitumor activity evaluation of the target compound was carried out by MTT method, and the in vitro anti-tumor activity was carried out in human hepatocellular carcinoma cells (HepG-2). Experimental results show that all compounds are higher than the activity of the parent silybin, of which compound I1 has a certain inhibitory effect on human HepG-2 cells, which is worth further study.

5.
Acta Pharmaceutica Sinica ; (12): 494-505, 2023.
Artículo en Chino | WPRIM | ID: wpr-965612

RESUMEN

Malignant tumors are major diseases that endanger human health. Due to their complex and variable microenvironment, most anti-tumor drugs cannot precisely reach the focal tissue and be released in a controlled manner. Intelligent responsive nano carriers have become a hot spot in the field of anti-tumor drug delivery systems. As an excellent nano material, mesoporous silica has the advantages of non-toxic, stable, adjustable pore volume and pore diameter, and easy functional modification on the surface. By virtue of its perceptive response to the tumor microenvironment or physiological changes, it can achieve the targeted drug release or controlled drug release of the drug delivery system in the tissue, making it an ideal carrier for intelligent response drug delivery system. In this paper, we review the design strategies and current research status of smart responsive anti-tumor drug delivery systems based on mesoporous silica, in order to provide a reference for the development of anti-tumor drug nanoformulations.

6.
Journal of Pharmaceutical Practice ; (6): 160-167, 2023.
Artículo en Chino | WPRIM | ID: wpr-965566

RESUMEN

Objective To explore the anti-tumor mechanism of saffron (Crocus sativus L.) by network pharmacology and reverse molecular docking techniques. Methods The main chemical components of saffron were obtained by searching published literature and TCMSP database. The potential targets of these components were predicted using PharmMapper server. The corresponding target genes were identified from UniProt database. The underlying anti-tumor targets of saffron were obtained by mapping the disease genes of cancer or tumor with GeneCards, OMIM and TTD databases. Cytoscape software was used to construct the action target network of saffron active components. The protein-protein interaction analysis was performed by String database, and the GO function and KEGG pathway enrichment analysis were performed by Metascape platform. Finally, molecular docking was performed to evaluate the binding of main components with their potential targets. Results A total of 9 active ingredients in saffron including quercetin, kaempferol, isorhamnetin, picrocrocin and crocin I, were identified, which might act on 37 key targets including AKT1, CCND1, MMP9, EGFR, TP53, involved in P53, TNF and other signaling pathways. Molecular docking indicated modest binding potency through hydrogen bonding, and hydrophobic interactions. Conclusion The anti-tumor effect of saffron was evaluated via the network of components-targets-pathways, which might provide a foundation for further research.

7.
China Pharmacy ; (12): 648-652, 2023.
Artículo en Chino | WPRIM | ID: wpr-965499

RESUMEN

OBJECTIVE To promote the standardization and integrity of the informed consent form for clinical trials of registered anti-tumor drugs, and to protect the legitimate rights and interests of the subjects. METHODS The ethical review resolutions of clinical trial projects of registered anti-tumor drugs that were initially reviewed by the Ethics Committee of our hospital from July 1st, 2020 to July 1st, 2022 were summarized to statistically analyze the problematic items according to the “Quality Analysis Form of Informed Consent” prepared by our hospital. RESULTS Of the 316 clinical trials of registered anti- tumor drugs that were initially reviewed, 257 (81.3%) had problems with the contents of informed consent form, mainly domestic multi-center trials and phase Ⅲ trials. The main problems included the vague notification of the test fee bearer (68.5%), the incomplete notification of the test content (59.1%), the insufficient notification of rights and interests and risks (58.4%), the insufficient notification of personal information protection (56.0%), and the nonstandard expression of the informed consent form (52.5%). CONCLUSIONS There is still a gap between the informed consent form of the clinical trials of registered anti-tumor drugs in our hospital and the requirements of the new version of Good Clinical Practice for Drugs (GCP). The parties involved in the test can take a number of measures to improve the standardization and integrity of the informed consent form, and the research team should design the informed consent form in strict accordance with the requirements of the new GCP and pay attention to the comprehensive notification about the test. The Ethics Committee can provide the sponsor and researcher with the template of informed consent form and the key points of writing, continue to strengthen the examination ability, improve the examination quality, and effectively protect the safety and interests of the subjects.

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 275-282, 2023.
Artículo en Chino | WPRIM | ID: wpr-964969

RESUMEN

Malignant tumor poses a threat to human health and life. The incidence and fatality rate of malignant tumor have been on the rise. The currently available therapies are radiotherapy and chemotherapy, which cause severe adverse reactions and irreversible damage and thus influence the quality of life of patients. Therefore, it is urgent to find new, safe and effective antitumor drugs. Chinese medicinals are safe with little adverse reactions and long-lasting effect in the treatment of tumor, which have attracted the attention of scholars. Amid the advancement of medical research, more and more anti-tumor components have been extracted from Chinese medicinals. Phellinus is a valuable Chinese medicinal material, and the chemical components mainly include polysaccharides, flavonoids, triterpenes, and polyphenols, which have anti-inflammatory, hypoglycemic, liver-protecting, and anti-tumor effect. The chemical components of Phellinus can inhibit various malignant tumors such as lung cancer, gastric cancer, colon cancer, and melanoma. It exerts the anti-tumor effect by inhibiting proliferation and metastasis of tumor cells, inducing apoptosis and autophagy of the cells, suppressing tumor angiogenesis, and regulating the immunity. In addition, it can enhance efficacy, reduce toxicity, and boost the sensitivity in the radiotherapy and chemotherapy. In this paper, articles were retrieved from China National Knowledge Infrastructure (CNKI), Web of Science, Pubmed, and Google Scholar with keywords such as "Phellinus, chemical components, and anti-tumor", and then the chemical components of Phellinus and the anti-tumor mechanisms were summarized. The findings are expected to lays a basis for further development and clinical application of this medicinal.

9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 257-265, 2023.
Artículo en Chino | WPRIM | ID: wpr-964967

RESUMEN

As a rare Chinese medicinal material, Paridis Rhizoma is mainly distributed in Yunnan, Guangxi, and Guizhou in southwestern China, with the effect of clearing heat and detoxifying, alleviating edema and relieving pain, cooling liver and tranquilizing mind. It is particularly effective for injuries from falls, fractures, contusions and strains, snake bites, cold wind-induced convulsion, and other diseases, which has been used for more than 2 000 years. According to modern research, polyphyllin Ⅱ, one of the main active components of Paridis Rhizoma, belongs to diosgenin in structure. It has the anti-tumor, anti-inflammatory, antiviral, antibacterial, immune-regulating, antioxidant, and multidrug resistance-reversing activities, showing good application prospect. Especially, the anti-tumor effect of polyphyllin Ⅱ has attracted wide attention, and the mechanism is inhibiting proliferation, migration, and invasion of tumor cells, inducing cell cycle arrest, apoptosis, and autophagy, suppressing angiogenesis, and modulating tumor microenvironment. However, the pharmacokinetic results show that polyphyllin Ⅱ has low bioavailability in vivo due to the low solubility, poor absorption, unsatisfactory distribution, and slow metabolism, which limit the clinical application. In recent years, there has been an explosion of research on the adverse reactions of polyphyllin Ⅱ, such as the strong hemolytic activity and obvious cytotoxicity to liver, kidney, myocardium and cardiovascular cells. Thus, papers were retrieved from "CNKI", "VIP", "Wanfang Data", "PubMed", "Web of Science", and "Elsevier SD" with "Paris saponin Ⅱ", "Polyphyllin Ⅱ" as the main keywords, and the pharmacological activities and mechanisms, pharmacokinetics, and adverse reactions were summarized. The findings are expected to serve as a reference for the in-depth research, development, and utilization of polyphyllin Ⅱ.

10.
China Pharmacy ; (12): 631-635, 2023.
Artículo en Chino | WPRIM | ID: wpr-964778

RESUMEN

Bilirubin has good anti-inflammatory, antioxidant and immunomodulatory effects, but its poor water solubility and low bioavailability greatly limit its clinical application. Researchers have developed bilirubin into various nanoparticles, which effectively eliminate the limitation of low solubility of bilirubin with the advantage of dosage form, so that they can maximize its pharmacological activities such as anti-inflammatory, anti-oxidation and immune regulation. Bilirubin nanoparticles have great application potential in a variety of gastrointestinal diseases, liver and kidney diseases, skin diseases, autoimmune diseases, islet transplantation and targeted therapy of tumors (both as a direct anti-tumor drug and as a drug delivery system). The study of bilirubin nanoparticles will promote the clinical application of bilirubin and the development of related new drugs.

11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 246-253, 2023.
Artículo en Chino | WPRIM | ID: wpr-961705

RESUMEN

In China, malignant tumors have become the main cause of death. In the past half century, the incidence and mortality of malignant tumors have been on the rise, posing a threat to health of patients, and the burden of cancer has been increasing. At the moment, malignant tumors are mainly treated by surgery, radiotherapy, and cytotoxic drugs, which, however, have limitations and induce great adverse reactions. As biological technology and the research on tumor microenvironment, immunology, cell biology, and molecular biology advance, high-efficiency low-toxicity targeted therapy has attracted wide attention in the treatment of tumors. Epidermal growth factor receptor (EGFR) plays an important role in many cellular processes such as cell proliferation, survival, differentiation, migration, inflammation, and stromal homeostasis. EGFR promotes tumor growth, proliferation, and metastasis in a variety of ways. Chinese medicine has unique efficacy in the comprehensive treatment of malignant tumors. Through multiple components, multiple targets, and multiple pathways, it enhances the efficacy, reduces toxicity, prolongs life, and improves life quality in the treatment of tumors. Many Chinese medicines and their active components exert anti-tumor effect by inhibiting the EGFR signal transduction pathway. Through targeted inhibition of EGFR, Chinese medicine can promote the apoptosis and autophagy of tumor cells, suppress the proliferation and metastasis of tumor cells, and delay the progression of tumors. Thus, EGFR is a potential target for suppressing tumor. This paper summarizes the relationship between EGFR signal transduction pathway and tumor occurrence and development and analyzes the anti-tumor action mode and possible mechanisms of Chinese medicine and the active components by regulating EGFR signaling pathway, which is expected to provide a reference for clinical practice.

12.
Chinese Herbal Medicines ; (4): 169-180, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982507

RESUMEN

Cancer still has elevated morbidity and mortality, which undoubtedly impacts the life quality of affected individuals. Remarkable advances have been made in cancer therapy, although the toxicities of traditional therapies remain an obvious challenge. Dahuang Zhechong Pill (DHZCP), developed by Zhongjing Zhang in the Synopsis of the Golden Chamber, represents an effective anticancer traditional Chinese medicine (TCM). In this review, it was found that DHZCP is therapeutically utilized in liver, lung, gastric, pancreatic and other cancers in clinic. Pharmacological evidence showed that its anti-tumor mechanisms mainly involve induced cell cycle arrest, apoptosis and autophagy, as well as suppressed tumor cell proliferation, obstructed angiogenesis and metastasis, enhanced immunity, and reversal of multidrug resistance. The present review provides a solid basis for the clinical application of DHZCP and may promote the wide use of TCM in clinical antitumor application.

13.
China Journal of Chinese Materia Medica ; (24): 2679-2698, 2023.
Artículo en Chino | WPRIM | ID: wpr-981372

RESUMEN

Cytisine derivatives are a group of alkaloids containing the structural core of cytisine, which are mainly distributed in Fabaceae plants with a wide range of pharmacological activities, such as resisting inflammation, tumors, and viruses, and affecting the central nervous system. At present, a total of 193 natural cytisine and its derivatives have been reported, all of which are derived from L-lysine. In this study, natural cytisine derivatives were classified into eight types, namely cytisine type, sparteine type, albine type, angustifoline type, camoensidine type, cytisine-like type, tsukushinamine type, and lupanacosmine type. This study reviewed the research progress on the structures, plant sources, biosynthesis, and pharmacological activities of alkaloids of various types.


Asunto(s)
Alcaloides/química , Quinolizinas/farmacología , Azocinas/química , Fabaceae
14.
China Pharmacy ; (12): 2034-2038, 2023.
Artículo en Chino | WPRIM | ID: wpr-980602

RESUMEN

Sanggenon C is a kind of flavonoid compound mainly extracted from the traditional Chinese medicine Morus alba. The pharmacological effects and mechanisms of sanggenon C are systematically reviewed and summarized, and it is found that this component can improve pulmonary fibrosis by regulating transforming growth factor-β1 and nuclear factor-κB; it can exert anti- tumor effects by inhibiting the proliferation of tumor cells and inducing the apoptosis of tumor cells; it can exert cardioprotective, neuroprotective and hepatoprotective effects by regulating multiple signaling pathways, such as calcineurin/nuclear factor of activated T cells 2, peroxisome proliferators-activated receptor α, and Ras homolog gene family member A/Rho-associated coiled- coil containing protein kinase, enhancing autophagy, reducing inflammatory response and reducing the level of oxidative stress; it can treat osteoporosis by inhibiting osteoclast uptake and promoting osteoblast formation; it has certain inhibitory effect on many enzymes; it can exert anti-inflammatory effects by regulating nuclear factor-κB signaling pathway; it can exert antioxidant effects by scavenging free radicals. However, researches on the pharmacological effects of sanggenon C mostly focus on the cellular and animal field, and the specific mechanism of action is not yet clear. In the future, basic research and clinical trials are still needed to explore and verify.

15.
Journal of Pharmaceutical Practice ; (6): 465-471, 2023.
Artículo en Chino | WPRIM | ID: wpr-984554

RESUMEN

Bavachinin is a dihydroflavone isolated from dried ripe fruits of Psoralea corylifolia L.,which has various pharmacological activities, such as anti-tumor, anti-virus, anti-diabetes, anti-inflammatory and neuroprotective, and good potential in clinical applications. With the increasing concern about the safety of P. corylifolia applications in clinical, the bavachinin has been found to be one of the main components causing liver injury. In this paper, the pharmacological activities and hepatotoxicity of bavachinin in the recent 20 years were reviewed, in order to provide reference for the further study and clinical application.

16.
Acta Pharmaceutica Sinica B ; (6): 2613-2627, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982865

RESUMEN

Uncommon epidermal growth factor receptor (EGFR) mutations account for 10%-20% of all EGFR mutations in non-small-cell lung cancer (NSCLC). The uncommon EGFR-mutated NSCLC is associated with poor clinical outcomes and generally achieved unsatisfactory effects to the current therapies using standard EGFR-tyrosine kinase inhibitors (TKIs), including afatinib and osimertinib. Therefore, it is necessary to develop more novel EGFR-TKIs to treat uncommon EGFR-mutated NSCLC. Aumolertinib is a third-generation EGFR-TKI approved in China for treating advanced NSCLC with common EGFR mutations. However, it remains unclear whether aumolertinib is effective in uncommon EGFR-mutated NSCLC. In this work, the in vitro anticancer activity of aumolertinib was investigated in engineered Ba/F3 cells and patient-derived cells bearing diverse uncommon EGFR mutations. Aumolertinib was shown to be more potent in inhibiting the viability of various uncommon EGFR-mutated cell lines than those with wild-type EGFR. And in vivo, aumolertinib could also significantly inhibit tumor growth in two mouse allograft models (V769-D770insASV and L861Q mutations) and a patient-derived xenografts model (H773-V774insNPH mutation). Importantly, aumolertinib exerts responses against tumors in advanced NSCLC patients with uncommon EGFR mutations. These results suggest that aumolertinib has the potential as a promising therapeutic candidate for the treatment of uncommon EGFR-mutated NSCLC.

17.
Acta Pharmaceutica Sinica B ; (6): 1554-1567, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982823

RESUMEN

Tumor microenvironment contributes to poor prognosis of pancreatic adenocarcinoma (PAAD) patients. Proper regulation could improve survival. Melatonin is an endogenous hormone that delivers multiple bioactivities. Here we showed that pancreatic melatonin level is associated with patients' survival. In PAAD mice models, melatonin supplementation suppressed tumor growth, while blockade of melatonin pathway exacerbated tumor progression. This anti-tumor effect was independent of cytotoxicity but associated with tumor-associated neutrophils (TANs), and TANs depletion reversed effects of melatonin. Melatonin induced TANs infiltration and activation, therefore induced cell apoptosis of PAAD cells. Cytokine arrays revealed that melatonin had minimal impact on neutrophils but induced secretion of Cxcl2 from tumor cells. Knockdown of Cxcl2 in tumor cells abolished neutrophil migration and activation. Melatonin-induced neutrophils presented an N1-like anti-tumor phenotype, with increased neutrophil extracellular traps (NETs) causing tumor cell apoptosis through cell-to-cell contact. Proteomics analysis revealed that this reactive oxygen species (ROS)-mediated inhibition was fueled by fatty acid oxidation (FAO) in neutrophils, while FAO inhibitor abolished the anti-tumor effect. Analysis of PAAD patient specimens revealed that CXCL2 expression was associated with neutrophil infiltration. CXCL2, or TANs, combined with NET marker, can better predict patients' prognosis. Collectively, we discovered an anti-tumor mechanism of melatonin through recruiting N1-neutrophils and beneficial NET formation.

18.
Journal of Central South University(Medical Sciences) ; (12): 1128-1135, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010336

RESUMEN

OBJECTIVES@#Nasopharyngeal cracinoma is a kind of head and neck malignant tumor with high incidence and high mortality. Due to the characteristics of local recurrence, distant metastasis, and drug resistance, the survival rate of patients after treatment is not high. Paclitaxel (PTX) is used as a chemotherapy drug in treating nasopharyngeal carcinoma, but nasopharyngeal carcinoma cells are easy to develop resistance to PTX. Inhibition of heat shock protein 90 (Hsp90) can overcome common signal redundancy and resistance in many cancers. This study aims to investigate the anti-tumor effect of ginkgolic acids C15꞉1 (C15:1) combined with PTX on nasopharyngeal carcinoma CNE-2Z cells and the mechanisms.@*METHODS@#This experiment was divided into a control group (without drug), a C15:1 group (10, 30, 50, 70 μmol/L), a PTX group (5, 10, 20, 40 nmol/L), and a combination group. CNE-2Z cells were treated with the corresponding drugs in each group. The proliferation of CNE-2Z cells was evaluated by methyl thiazolyl tetrazolium (MTT). Wound-healing assay and transwell chamber assay were used to determine the migration of CNE-2Z cells. Transwell chamber was applied to the impact of CNE-2Z cell invasion. Annexin V-FITC/PI staining was used to observe the effect on apoptosis of CNE-2Z cells. The changes of proteins involved in cell invasion, migration, and apoptosis after the combination of C15꞉1 and PTX treatment were analyzed by Western blotting.@*RESULTS@#Compared with the control group, the C15꞉1 group and the PTX group could inhibit the proliferation of CNE-2Z cells (all P<0.05). The cell survival rates of the C15꞉1 50 μmol/L combined with 5, 10, 20, or 40 nmol/L PTX group were lower than those of the single PTX group (all P<0.05), the combination index (CI) value was less than 1, suggesting that the combined treatment group had a synergistic effect. Compared with the 50 μmol/L C15꞉1 group and the 10 nmol/L PTX group, the combination group significantly inhibited the invasion and migration of CNE-2Z cells (all P<0.05). The results of Western blotting demonstrated that the combination group could significantly down-regulate Hsp90 client protein matrix metalloproteinase (MMP)-2 and MMP-9. The results of double staining showed that compared with the 50 μmol/L C15꞉1 group and the 10 nmol/L PTX group, the apoptosis ratio of CNE-2Z cells in the combination group was higher (both P<0.05). The results of Western blotting suggested that the combination group could decrease the Hsp90 client proteins [Akt and B-cell lymphoma-2 (Bcl-2)] and increase the Bcl-2-associated X protein (Bax).@*CONCLUSIONS@#The combination of C15꞉1 and PTX has a synergistic effect which can inhibit cell proliferation, invasion, and migration, and induce cell apoptosis. This effect may be related to the inhibition of Hsp90 activity by C15꞉1.


Asunto(s)
Humanos , Carcinoma Nasofaríngeo , Paclitaxel/uso terapéutico , Neoplasias Nasofaríngeas/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis , Proliferación Celular , Línea Celular Tumoral
19.
Acta Pharmaceutica Sinica ; (12): 3539-3548, 2023.
Artículo en Chino | WPRIM | ID: wpr-1004637

RESUMEN

Cancer and cardiovascular diseases are the two major causes of death worldwide. The application of anti-tumor drugs has significantly improved the prognosis of patients, the cardiovascular toxicity caused by the application of them has become an important factor affecting the survival and prognosis of cancer patients. Therefore, the prevention and treatment of cardiovascular toxicity related to cancer treatment is increasingly important. The cardiovascular toxicity associated with anti-tumor drugs exhibits different clinical manifestations and involves multiple pathological mechanisms. This article reviews the current research progress from the perspective of the characteristics, molecular mechanisms and prevention and treatment strategies of cardiovascular toxicity caused by cancer drugs.

20.
Cancer Research on Prevention and Treatment ; (12): 1180-1184, 2023.
Artículo en Chino | WPRIM | ID: wpr-1003797

RESUMEN

Cholangiocarcinoma is a bile duct adenocarcinoma derived from the bile duct epithelium. Current treatment strategies for cholangiocarcinoma include surgery, chemotherapy, and radiotherapy. Surgical treatment is the first choice for all subtypes of cholangiocarcinoma. However, cholangiocarcinoma has the characteristics of high malignancy, easy recurrence after surgery, and low 5-year survival rates. Recent studies have found that many traditional Chinese medicines exhibit excellent anti-tumor effects in the treatment of various cancers, including cholangiocarcinoma. These medicines have advantages, such as low prices and abundant reserves, and are considered as an effective and safe complementary and alternative therapy for the treatment of cholangiocarcinoma. This article aims to review the effects of traditional Chinese medicine on cholangiocarcinoma from different aspects and levels in recent years. Results will provide new ideas for the prevention and treatment of cholangiocarcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA