Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1520-1528, 2022.
Artículo en Chino | WPRIM | ID: wpr-1015829

RESUMEN

Among the types of lung cancer, lung adenocarcinoma accounts for the majority, and its overall survival rate is poor. B-cell translocation gene 2 (BTG2) is a member of the antiproliferative gene family, belonging to the BTG/TOB family. Many studies have shown that BTG2 was abnormally expressed in many types of tumors, but its regulatory role in the radiosensitivity of lung adenocarcinoma remained unclear. In this study, we explored the expression level of BTG2 in patients with lung adenocarcinoma and its correlation with clinical prognosis through online database and tissue samples of lung adenocarcinoma patient. The results indicated that the expression level of BTG2 decreased significantly in lung adenocarcinoma patient with radiation resistance. Bioinformatics analysis confirmed that BTG2 could respond to radiotherapy in lung adenocarcinoma cell lines, and its low expression in lung adenocarcinoma patients was associated with poor prognosis (P < 0.05). The lentivirus overexpressing BTG2 (OE-BTG2) was transfected into human lung adenocarcinoma cell lines to increase the expression level of BTG2 including A549 and H1299. And the effect of BTG2 overexpression on the radiosensitivity of lung adenocarcinoma cell lines was detected by clone formation assay. Clone formation experiment confirmed that overexpression of BTG2 could significantly enhance the radiosensitivity of A549 and H1299 cell lines (P < 0.05). The expression levels of BTG2 and apoptosis related protein-Bax were detected by Western blotting (WB) and immunohistochemistry (IHC). The effect of BTG2 on radiation sensitivity of lung adenocarcinoma was further detected via nude mouse in vivo. WB experiment confirmed that BTG2 upregulation could significantly increase the apoptosis level of A549 and H1299 cells after radiation. Moreover, BTG2 overexpression can markedly enhance the radiosensitivity of lung adenocarcinoma (P < 0.05) and increase the protein level of Bax after radiation in vivo. In conclusion, BTG2 had low expression in lung adenocarcinoma patients and its low expression level was closely related to the poor clinical prognosis. Overexpression of BTG2 can increase the radiosensitivity of lung adenocarcinoma cell lines and promote the process of apoptosis after radiation, indicating a new target for overcoming the radiation resistance of lung adenocarcinoma.

2.
Braz. j. med. biol. res ; 50(1): e5933, 2017. graf
Artículo en Inglés | LILACS | ID: biblio-839243

RESUMEN

Iodine-131 (131I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following 131I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with 131I. They were then assessed for 131I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and 131I or with a NF-κB inhibitor of BMS-345541 and 131I, non-transfected SW579 cells were assessed in JNK/NFκB pathways. It was observed that 131I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G0/G1 phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and 131I, the non-transfected SW579 cell lines significantly inhibited JNK pathway, NF-κB pathway and the expression of BTG2. However, when treated with BMS-345541 and 131I, only the NF-κB pathway was suppressed. 131I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF-κB pathways.


Asunto(s)
Humanos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Radioisótopos de Yodo/uso terapéutico , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/genética , Neoplasias de la Tiroides/tratamiento farmacológico , Línea Celular Tumoral , Radioisótopos de Yodo/farmacología , Proteínas de Neoplasias/metabolismo , Reacción en Cadena de la Polimerasa , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología
3.
Yonsei Medical Journal ; : 292-303, 2014.
Artículo en Inglés | WPRIM | ID: wpr-174230

RESUMEN

The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2(/TIS21/PC3).


Asunto(s)
Metilación , Proteína Metiltransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA