Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Restorative Dentistry & Endodontics ; : 270-275, 2014.
Artículo en Inglés | WPRIM | ID: wpr-92621

RESUMEN

OBJECTIVES: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. MATERIALS AND METHODS: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3-mm from the tip and then bent 45degrees with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3-mm, and clockwise rotations (2-rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. RESULTS: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). CONCLUSIONS: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.


Asunto(s)
Vértebra Cervical Axis , Torque
2.
Journal of Korean Society of Spine Surgery ; : 130-135, 2001.
Artículo en Coreano | WPRIM | ID: wpr-228668

RESUMEN

PURPOSE: To measure bending stiffness of rod in pedicle screw systems and identify the optimal rod for surgical correction of spinal deformities. MATERIALS AND METHODS: Bending stiffness of six different rods -7 mm stainless steel, 6 mm titanium alloy, 6.35 mm titanium, 5.5 mm titanium, 6 mm Shape Memory Alloy after martensite temperature, 7 mm Shape Memory Alloy after martensite temperature were measured by MTS 858 Bionix test system according to the ASTM standards. The specimen number was 8 for each rod. Young's modulus of elasticity was calculated from load-displacement data. RESULTS: Seven-mm stainless steel rod was stiffer than any other rods with bending stiffness of 143.7 +/- 3.8 N/mm, and also showed largest Young's modulus of elasticity of 135.1 +/- 3.0 GPa. Six-mm Shape Memory Alloy rod after martensite temperature was most flexible with bending stiffness of 58.1 +/- 2.8 N/mm, and showed smallest Young's modulus of elasticity of 68.0 +/-2.1 GPa. Seven-mm Shape Memory Alloy rod after martensite temperature was similar to the 6.35 mm titanium and 6 mm titanium alloy rod in bending stiffness and Young's modulus of elasticity. CONCLUSION: Seven-mm stainless steel rod was the stiffest rod tested, which is necessary to improve correction rate and maintain achieved correction. However, the rod selection should be individulized since stiffer rod might increase the chance of acute failure. Seven-mm Shape Memory Alloy could be more useful in deformity correction than 6 mm Shape Memory Alloy since it was not only similar to other rods in stiffness but also had shape memory function which would be necessary to establish the desired position of the spine.


Asunto(s)
Aleaciones , Anomalías Congénitas , Módulo de Elasticidad , Elasticidad , Memoria , Columna Vertebral , Acero Inoxidable , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA