Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Braz. J. Pharm. Sci. (Online) ; 53(2): e16128, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-951895

RESUMEN

ABSTRACT BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug Disposition Classification System) were proposed as tools for classifying drugs into four categories. Both systems consider the solubility as an important characteristic for the classification of compounds in drug development and in vivo disposition prediction. Although some results of drug solubility can be found in the literature, the aforementioned characteristic is not entirely clear when considering didanosine (ddI). Based on that, the solubility of ddI was evaluated using equilibrium and intrinsic dissolution methods. For the equilibrium method, excess amount of ddI was added to each media until obtaining a supersaturated solution and the mixture was submitted to agitation at 37 °C. For the intrinsic dissolution method, the drug was compressed into the Wood's apparatus matrix and subjected to dissolution in each media with agitation at 37 °C. The results obtained from the equilibrium method indicated that it was necessary 139.37 mL of pH 1.2 media, 87.72 mL of pH 4.5 media, 12.54 mL of pH 6.8 media, 5.03 mL of pH 7.5 media and 7.65 mL of purified water for drug solubilization. Furthermore, a very fast intrinsic dissolution rate (IDR) was obtained for each media: 0.1 mg/min/cm² (pH 1.2), 0.2 mg/min/cm² (pH 4.5), 0.2 mg/min/cm² (pH 6.8), 0.1 mg/min/cm² (pH 7.5) and 0.1 mg/min/cm² (purified water). Based on these results, ddI can be considered as a highly soluble drug for both equilibrium and intrinsic dissolution methods.


Asunto(s)
Solubilidad , Biofarmacia , Didanosina/análisis , Análisis de Sistemas , Preparaciones Farmacéuticas/clasificación
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 888-897, 2016.
Artículo en Inglés | WPRIM | ID: wpr-812544

RESUMEN

Natural products (NPs) are compounds that are derived from natural sources such as plants, animals, and micro-organisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1 (high solubility, extensive metabolism), 22% to class 2 (low solubility, extensive metabolism), 40% to class 3 (high solubility, poor metabolism), and 9% to class 4 (low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we compiled 32 drugs from plants, 50% (16) of total in class 1, 22% (7) in class 2 and 28% (9) in class 3, none found in class 4; Meantime, the antibiotics were found 5 (16%) in class 2, 22 (71%) in class 3, and 4 (13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products.


Asunto(s)
Animales , Humanos , Productos Biológicos , Clasificación , Metabolismo , Farmacocinética , Biofarmacia , Métodos , Evaluación Preclínica de Medicamentos , Métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA