Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese journal of integrative medicine ; (12): 683-690, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982302

RESUMEN

OBJECTIVE@#To explore the proliferation inhibitory effect of quinones from Blaps rynchopetera defense secretion on colorectal tumor cell lines.@*METHODS@#Human colorectal cancer cell HT-29, human colorectal adenocarcinoma cell Caco-2 and normal human colon epithelial cell CCD841 were chosen for the evaluation of inhibitory activity of the main quinones of B. rynchopetera defense secretion, including methyl p-benzoquinone (MBQ), ethyl p-benzoquinone (EBQ), and methyl hydroquinone (MHQ), through methyl thiazolyl tetrazolium assay. The tumor-related factors, cell cycles, related gene expressions and protein levels were detected by enzyme-linked immunosorbent assy, flow cytometry, RT-polymerase chain reaction and Western blot, respectively.@*RESULTS@#MBQ, EBQ, and MHQ could significantly inhibit the proliferation of Caco-2, with half maximal inhibitory concentration (IC50) values of 7.04 ± 0.88, 10.92 ± 0.32, 9.35 ± 0.83, HT-29, with IC50 values of 14.90 ± 2.71, 20.50 ± 6.37, 13.90 ± 1.30, and CCD841, with IC50 values of 11.40 ± 0.68, 7.02 ± 0.44 and 7.83 ± 0.05 µg/mL, respectively. Tested quinones can reduce the expression of tumor-related factors tumor necrosis factor α, interleukin (IL)-10, and IL-6 in HT-29 cells, selectively promote apoptosis, and regulate the cell cycle which can reduce the proportion of cells in the G1 phase and increase the proportion of the S phase. Meanwhile, tested quinones could up-regulate mRNA and protein expression of GSK-3β and APC, while down-regulate that of β-catenin, Frizzled1, c-Myc, and CyclinD1 in the Wnt/β-catenin pathway of HT-29 cells.@*CONCLUSION@#Quinones from B. rynchopetera defense secretion could inhibit the proliferation of colorectal tumor cells and reduce the expression of related factors, which would be functioned by regulating cell cycle, selectively promoting apoptosis, and affecting Wnt/β-catenin pathway-related mRNA and protein expressions.


Asunto(s)
Humanos , beta Catenina/metabolismo , Células CACO-2 , Quinonas/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Apoptosis , Benzoquinonas/farmacología , ARN Mensajero , Vía de Señalización Wnt
2.
China Journal of Chinese Materia Medica ; (24): 3576-3588, 2023.
Artículo en Chino | WPRIM | ID: wpr-981489

RESUMEN

Network pharmacology, molecular docking, and in vivo and in vitro experiments were employed to study the molecular mechanism of Blaps rynchopetera Fairmaire in the treatment of non-small cell lung cancer(NSCLC). The components of B. rynchopetera were collected by literature review, and the active components were screened out through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). PharmMapper was used to obtain the targets of the active components. The targets of NSCLC were obtained from DrugBank, GeneCards, OMIM, TTD, and PharmGKB. The Venn diagram was drawn to identify the common targets shared by the active components of B. rynchopetera and NSCLC. The "drug component-target" network and protein-protein interaction(PPI) network were constructed by Cytoscape, and the key targets were screened by Centiscape. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the above key targets were performed by DAVID. AutoDock and PyMOL were used for the molecular docking between the key targets and corresponding active components. A total of 31 active components, 72 potential targets, and 11 key targets of B. rynchopetera against NSCLC were obtained. The active components of B. rynchopetera had good binding activity with key targets. Further, the serum containing B. rynchopetera was prepared and used to culture human lung adenocarcinoma A549 cells. The CCK-8 assay was employed to determine the inhibition rates on the growth of A549 cells in blank control group and those exposed to different concentrations of B. rynchopetera-containing serum, cisplatin, and drug combination(B. rynchopetera-containing serum+cisplatin) for different time periods. The cell migration and invasion of A549 cells were detected by cell scratch assay and Transwell assay, respectively. Western blot was employed to determine the expression levels of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X(Bax), caspase-3, cell division cycle 42(CDC42), proto-oncogene tyrosine-protein kinase SRC, and vascular endothelial growth factor(VEGF) in A549 cells. C57BL/6 mice were inoculated with Lewis cells and randomly assigned into a model control group, a B. rynchopetera group, a cisplatin group, and a drug combination(B. rynchopetera+cisplatin) group, with 12 mice per group. The body weight and the long diameter(a) and short diameter(b) of the tumor were monitored every other day during treatment, and the tumor volume(mm~3) was calculated as 0.52ab~2. After 14 days of continuous medication, the mice were sacrificed for the collection of tumor, spleen, and thymus, and the tumor inhibition rate and immune organ indexes were calculated. The tissue morphology of tumors was observed by hematoxylin-eosin(HE) staining, and the positive expression of Bax, Bcl-2, caspase-3, CDC42, SRC, and VEGF in the tumor tissue was detected by immunohistochemistry. The results indicated that B. rynchopetera and the drug combination regulated the expression levels of Bax, Bcl-2, caspase-3, CDC42, SRC, and VEGF to inhibit the proliferation, migration, and invasion of A549 cells and Lewis cells, thus playing a role in the treatment of NSCLC via multiple ways.


Asunto(s)
Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Carcinoma de Pulmón de Células no Pequeñas/genética , Caspasa 3 , Farmacología en Red , Factor A de Crecimiento Endotelial Vascular , Cisplatino , Simulación del Acoplamiento Molecular , Proteína X Asociada a bcl-2 , Neoplasias Pulmonares/genética , Proliferación Celular , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China
3.
China Journal of Chinese Materia Medica ; (24): 5603-5611, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008757

RESUMEN

This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/β-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and β-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and β-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/β-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.


Asunto(s)
Ratas , Animales , Vía de Señalización Wnt , Neoplasias Pulmonares/genética , beta Catenina/metabolismo , Antígeno Nuclear de Célula en Proliferación , Proteína X Asociada a bcl-2/metabolismo , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , Ciclofosfamida , Línea Celular Tumoral
4.
Chinese Traditional and Herbal Drugs ; (24): 2381-2384, 2015.
Artículo en Chino | WPRIM | ID: wpr-854017

RESUMEN

Objective: To investigate the chemical constituents of Blaps rynchopetera. Methods: Compounds were isolated and purified on silica gel, Sephadex LH20, ODS, and D101 column chromtography. The structures were elucidated on the basis of NMR spectral data and HR-ESI-MS. Results: Ten cyclodipeptides were isolated from the n-butyl extract fraction of B. rynchopetera, and their structures were determined as cyclo (Leu-Pro) (1), cyclo (Val-Pro) (2), cyclo (Ile-Pro) (3), cyclo (Ser-Pro) (4), cyclo (Tyr-Pro) (5), cyclo (Val-Ile) (6), cyclo (Val-Leu) (7), cyclo (Val-Tyr) (8), cyclo (Ile-Tyr) (9), and cyclo (Phe-Tyr) (10). Conclusion: All the 10 compounds are isolated from B. rynchopetera for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA