Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
The Korean Journal of Physiology and Pharmacology ; : 455-461, 2000.
Artículo en Inglés | WPRIM | ID: wpr-728130

RESUMEN

Zinc contained in the neurons of central nervous system is activity-dependently released and then attenuates NMDA (N-methyl-D-aspartate)-induced neurotoxicity while augmenting non-NMDA-induced neurodegeneration. Zinc also has been reported to produce antinociceptive action on the inflammation- and nerve injury-induced hyperalgesia in the behavioral test. In this study, we investigated the effects of zinc on the responses of dorsal horn cells to NMDA, kainate and graded electrical stimulation of C-fibers. In the majority of WDR cells (70.6%), zinc current-dependently inhibited WDR cell responses to NMDA and in the remaining cells, produced biphasic responses; excitation followed by inhibition. Zinc augmented the responses of WDR cells to iontophoretical application of kainate. The dominant effect of Zn2+ on the responses of WDR cells to C-fiber stimulation was excitatory, but inhibition, excitation-inhibition and no change of the responses to C-fiber stimulation were induced. Ca2+-EDTA antagonized the excitatory or inhibitory effects of Zn2+ on the WDR cell responses. These experimental findings suggest that Zn2+ modulates the transmission of sensory information in the rat spinal cord.


Asunto(s)
Animales , Ratas , Sistema Nervioso Central , Estimulación Eléctrica , Aminoácidos Excitadores , Hiperalgesia , Ácido Kaínico , N-Metilaspartato , Neuronas , Células del Asta Posterior , Médula Espinal , Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA