Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Chinese Journal of Radiological Health ; (6): 603-610, 2023.
Artículo en Chino | WPRIM | ID: wpr-1006314

RESUMEN

Objective To prepare 4-sulfonylcalix[6]arene-modified cotton fibers for adsorption and removal of uranium based on the specific complexation of calix[6]arene with uranium (VI). Methods Chemical grafting was used for the modification of cotton, which reacted with α-bromoisobutyryl bromide, glycidyl methacrylate, and 4-sulfonylcalix[6]arene. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (FTIR) were used to characterize the structure of 4-sulfonylcalix[6]arene-modified cotton (Cotton S-C[6]a). A Franz diffusion cell was used to simulate uranium-contaminated skin. Laser fluorimetry was used to determine the uranium content. Results SEM, XPS, and FTIR showed that cotton fibers were successfully grafted with 4-sulfonylcalix[6]arene. The optimal conditions of Cotton S-C[6]a for the adsorption of uranium (VI) was pH 4.0, duration of 20 min, and 20 mg of adsorbent. The adsorption process fitted well with pseudo-secondary-order kinetics. The uranium removal efficiency of Cotton S-C[6]a was up to 78.46% in aqueous solution and 81.72% on skin. Conclusion The synthesized Cotton S-C[6]a is highly efficient in the removal of uranium (VI) in solution and on contaminated skin.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 119-126, 2021.
Artículo en Chino | WPRIM | ID: wpr-906308

RESUMEN

Objective:To investigate bonding ability between 4-sulfonylcalix [6] arene (SCA6) and 15 alkaloids (matrine, allomatrine, dauricine, daurisoline, quinidine, quinine, crotaline, vincristine, gelsemine, koumine, tetrandrine, aloperine, oxymatrine, sophocarpine and sinomenine), and to evaluate viability<italic> in vitro</italic> of HepG2 and H9c2 cells with 12 alkaloids/SCA6 bonding systems (except allomatrine, oxymatrine, sinomenine). Method:Fluorescence competitive titration was used to determine the binding constants of alkaloids and SCA6, the inhibitory effect of alkaloid/SCA6 complex on proliferation of HepG2 and H9c2 cells was investigated by cell counting kit-8 (CCK-8). Result:All the 15 alkaloids had good bonding with SCA6 at the ratio of 1∶1 (the binding constants >1×10<sup>5</sup> mol·L<sup>-1</sup>, <italic>R</italic><sup>2</sup>>0.98), the aloperine (quinolizidine alkaloids) and SCA6 had the biggest binding constant (20.55×10<sup>6</sup> mol·L<sup>-1</sup>). In addition to gelsemine, crotaline, matrine and sophocarpine, 8 alkaloids (including aloperine, tetrandrine, dauricine, daurisoline, quinidine, quinine, vincristine and koumine) exhibited significant anti-tumor effects on HepG2 cells. Except for daurisoline, the anti-proliferation effect of the other 11 alkaloids before and after binding with SCA6 had no difference in HepG2 cells. In addition to gelsemine, crotaline, matrine and sophocarpine, the anti-proliferation effect of the other 8 alkaloids before and after binding with SCA6 had no difference in H9c2 cells. Conclusion:SCA6 shows intense binding ability with bisbenzylisoquinoline, quinolizidine and indole alkaloids. It can improve the solubility of alkaloids without affecting their anti-tumor activity, which provides a reference for subsequent related applications of SCA6 as a drug delivery carrier.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA