Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neumol. pediátr. (En línea) ; 17(4): 117-121, 2022. ilus, tab
Artículo en Español | LILACS | ID: biblio-1427365

RESUMEN

El control de la respiración comprende un componente automático involuntario y un componente voluntario, con centros de control en el tronco encefálico, principalmente en la médula oblonga y en el puente, y en la corteza cerebral. Estos centros reciben aferencias provenientes de sensores que detectan señales químicas y no químicas, interactúan entre sí y generan respuestas que llegan a las neuronas motoras inferiores a nivel de médula espinal. Estos procesos determinan el funcionamiento de los músculos implicados en la respiración, y de ese modo permite garantizar que los niveles de pO2 p CO2 y pH en la sangre arterial se mantengan en forma óptima, frente a diferentes situaciones y demandas metabólicas. Se hace una revisión actualizada del tema que permita comprender estos procesos.


The control of breathing comprises an involuntary automatic component and a voluntary component, with control centers in the brain stem, mainly in the medulla oblongata and in the bridge, and in the cerebral cortex. These centers receive afferences from sensors that detect chemical and non-chemical signals, interact with each other and generate responses that reach the lower motor neurons at the spinal cord level. These processes determine the functioning of the muscles involved in breathing, and thus ensure that the levels of pO2 p CO2 and pH in arterial blood are optimally maintained, in the face of different situations and metabolic demands. An up-to-date review of the subject is carried out to understand these processes.


Asunto(s)
Humanos , Fenómenos Fisiológicos Respiratorios , Músculos Respiratorios/fisiología , Corteza Cerebral/fisiología , Células Quimiorreceptoras/fisiología
2.
Rev. bras. entomol ; 65(3): e20210047, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1288473

RESUMEN

ABSTRACT Species of the scarab beetle genus Liogenys are potential pests to several crops in Brazil. This study aimed to describe the antennal sensilla of Liogenys suturalis (Blanchard, 1851). Adults were collected in a pasture area in Bálsamo, São Paulo state, Brazil, using a light trap. The antennae were dissected and images of the antennal sensilla were obtained using a scanning electron microscope. Sensilla ampulacea (pores), s. auricilica, s. basiconica, s. placodea, and s. trichodea are present in the lamellae. The antenna of females have 4399 sensilla, of which 3671 (83.5%) are s. placodea, 422 (9.5%) s. coeloconica, and 306 (6.9%) s. auricilica. The antennae of males have 4039 sensilla, of which 3117 (77.1%) are s. placodea, 353 (8.7%) s. coeloconica, and 569 (14.1%) s. auricilica. The antennal sensilla of the genus Liogenys have been described for the first time.

3.
Rev. cuba. invest. bioméd ; 32(1): 74-82, ene.-mar. 2013.
Artículo en Español | LILACS | ID: lil-673095

RESUMEN

El núcleo del tracto solitario comisural (NTSc) es el centro de relevo de las fibras aferentes procedentes de los baro y quimiorreceptores carotídeos, por lo que modula la presión arterial y la glucemia ante los estímulos en dichos receptores. La estimulación anóxica con cianuro de sodio (NaCN) en los cuerpos carotídeos produce una respuesta hiperglucemiante. La somatostatina (SS) inhibe la secreción de la hormona del crecimiento y del glucagón lo que produce un efecto hipoglucemiante. La SS y sus receptores en el NTS tienen un efecto inhibidor. Se postula que la somatostatina modula la respuesta hiperglucemiante después de la estimulación de los quimiorreceptores carotídeos (QRC) con NaCN. En este trabajo, la infunsión de SS en el NTSc 4 min antes del estímulo anóxico de los QRC, disminuyó el reflejo hiperglucemiante y la retención de glucosa cerebral a los 10 min del estímulo anóxico. Se concluye que la SS en el NTSc modula la respuesta hiperglucemiante y la retención de glucosa cerebral post-estimulación anóxica de los cuerpos carotídeos en ratas


The commissural nucleus of the solitary tract (NTSc) is the relay center of the afferents fibers from the carotid baro and chemoreceptors, so that modulates blood pressure and blood sugar to stimuli in these receptors. Anoxic stimulation with sodium cyanide (NaCN) in the carotid bodies produces a hyperglycemic response. Somatostatin (SS) inhibits secretion of growth hormone and glucagon producing a hypoglycemic effect. The SS and its receptors in the NTS have an inhibitory effect. It is postulated that somatostatin modulates the hyperglycaemic response after stimulation of carotid chemoreceptors (QRC) with NaCN. In this work, the SS infusion into NTSc 4 min before the anoxic stimulation of the QRC, decreased the hyperglycemic reflex and cerebral glucose retention after 10 min of anoxic stimulus. We conclude that SS modulates the NTSc hyperglycemic response and brain glucose retention post-anoxic stimulation of the carotid bodies in rats


Asunto(s)
Animales , Ratas , Cerebro/metabolismo , Hiperglucemia/inducido químicamente , Somatostatina , Ensayo Clínico
4.
Fudan University Journal of Medical Sciences ; (6): 5-11, 2012.
Artículo en Chino | WPRIM | ID: wpr-671668

RESUMEN

Peripheral chemoreceptors in the carotid body play a significant role in the transduction of chemical stimuli in the arterial blood notably hypoxia,hypercapnia and acidosis to the central for eliciting the chemoreflex,which is central to the hypoxic ventilatory response and is also important for the circulatory responses to hypoxia.It is known that interactions between the peripheral and central chemoreceptors are crucial to the magnitude of the reflex response for the ventilatory control.In addition,the carotid chemoreceptor activity contributes to the ventilatory and humoral responses to exercise and also significantly to the ventilatory acclimatization to chronic hypoxia at high altitude.Under diseased conditions,there are augmented chemoreceptor activity and chemoreflex sensitivity in patients with hypertension or sleep-disordered breathing including obstructive sleep apnea (OSA) and congestive heart failure and also in experimental animal models mimicking these diseases.Thus,the carotid body functions to maintain the oxygen homeostasis; whereas anomalous carotid chemoreceptor activities associated with diseases could be both adaptive and pathogenic in nature,for which cellular and molecular mechanisms have been proposed for the pathophysiogical consequences.

5.
Braz. j. med. biol. res ; 43(5): 409-424, May 2010. tab, ilus
Artículo en Inglés | LILACS | ID: lil-546329

RESUMEN

Fish and amphibians utilise a suction/force pump to ventilate gills or lungs, with the respiratory muscles innervated by cranial nerves, while reptiles have a thoracic, aspiratory pump innervated by spinal nerves. However, fish can recruit a hypobranchial pump for active jaw occlusion during hypoxia, using feeding muscles innervated by anterior spinal nerves. This same pump is used to ventilate the air-breathing organ in air-breathing fishes. Some reptiles retain a buccal force pump for use during hypoxia or exercise. All vertebrates have respiratory rhythm generators (RRG) located in the brainstem. In cyclostomes and possibly jawed fishes, this may comprise elements of the trigeminal nucleus, though in the latter group RRG neurons have been located in the reticular formation. In air-breathing fishes and amphibians, there may be separate RRG for gill and lung ventilation. There is some evidence for multiple RRG in reptiles. Both amphibians and reptiles show episodic breathing patterns that may be centrally generated, though they do respond to changes in oxygen supply. Fish and larval amphibians have chemoreceptors sensitive to oxygen partial pressure located on the gills. Hypoxia induces increased ventilation and a reflex bradycardia and may trigger aquatic surface respiration or air-breathing, though these latter activities also respond to behavioural cues. Adult amphibians and reptiles have peripheral chemoreceptors located on the carotid arteries and central chemoreceptors sensitive to blood carbon dioxide levels. Lung perfusion may be regulated by cardiac shunting and lung ventilation stimulates lung stretch receptors.


Asunto(s)
Animales , Anfibios/fisiología , Peces/fisiología , Respiración , Reptiles/fisiología , Células Quimiorreceptoras/fisiología , Mecanorreceptores/fisiología , Sistema Respiratorio/inervación
6.
Rev. argent. cardiol ; 75(3): 202-206, mayo-jun. 2007. ilus
Artículo en Español | LILACS | ID: lil-613242

RESUMEN

El cuerpo carotídeo (CC) es el principal quimiorreceptor arterial periférico, capaz de sensar los cambios en la PaO2, la PaCO2 y de pH y transducirlos en señales nerviosas reguladoras de respuestas ventilatorias, circulatorias y endócrinas, que permiten una adaptación a la hipoxemia, la acidosis y la hipercapnia. El seno carotídeo, ubicado próximo al CC, con función barorreceptora, genera respuestas cardiovasculares que descienden la tensión arterial (TA). Ambas estructuras son inervadas por el nervio del seno carotídeo (NSC), que a su vez se proyecta al núcleo del tracto solitario (NTS), y se relacionan íntimamente entre sí y reciben la denominación de baroquimiorreceptores. Últimamente estos órganos se han considerado claves en la regulación de respuestas cardiorrespiratorias homeostáticas que podrían estar íntimamente relacionadas con el desarrollo y el mantenimiento de la hipertensión arterial (HTA). Existe escasa información sobre los cambios estructurales que ocurren en estos órganos durante la HTA y/o como consecuencia de ella. Nuestro planteo es que los baroquimiorreceptores carotídeos representarían un nuevo “órgano blanco” de la HTA. En diversos estudios realizados en seres humanos y en modelos de hipertensión sistólica en animales observamos un daño severo en el CC que se correlacionó significativamente con la elevación de la TA. A su vez, considerando que el sistema renina-angiotensina-aldosterona (SRAA) tendría un papel significativo en la fisiopatología del daño observado, demostramos que el ramipril, versus el atenolol, ejerce un efecto protector sobre el CC más allá de la mera reducción de la TA. Incluso el losartán mostró dicho efecto protector, aun cuando los animales utilizados en los modelos fueron normotensos. Nuestros hallazgos indican que el CC se comporta como un órgano blanco de la HTA y que la activación de un SRAA local sería responsable de los cambios morfológicos y funcionales observados.


The carotid body (CB) is the main peripheral arterial chemoreceptor, able to sense changes in PaO2, PaCO2 and pH, and translate them into nervous signals that regulate ventilating, circulating and endocrine responses which allow adaptation to hypoxemia, acidosis, and hypercapnia. The carotid sinus, located next to the CB, with a baroreceptor function, generates cardiovascular responses that decrease arterial hypertension. Both structures are innervated by the carotid sinus nerve (CSN), which is projected to the solitary tract nucleus (STN), closely inter-related and called barochemoreceptors. Lately, these organs have been considered key in the regulation of homeostatic cardiorespiratory responses that could be intimately related to the development and maintenance of arterial hypertension (AHT). There is scant information on the structural changes that occur in these organs during AHT and/or as its consequence. Our hypothesis is that carotid barochemoreceptors would be a new “target organ” of the AHT. In several studies performed in humans and in models of systolic hypertension in animals we observed a severe damage in the CB which was significantly correlated with elevation of the AT. Hence, considering that the renin-angiotensin-aldosterone system(RAAS) would play a significant role in the pathophysiology of the observed injury, we showed that ramipril versus atenolol has a protective effect on the CB further to the mere decrease of the AT. Even though the animal models used had normal pressure, losartan showed this protective effect. Our findings indicate that the CB behaves as a target organ in AHT and the activation of a local RAAS would be responsible for the morphological and functional changes that were observed.


Asunto(s)
Animales , Antihipertensivos/uso terapéutico , Arterias Carótidas/fisiología , Arterias Carótidas/patología , Células Quimiorreceptoras/fisiología , Presorreceptores/fisiopatología , Atenolol/uso terapéutico , Cuerpo Carotídeo/fisiología , Hipertensión/fisiopatología , Losartán/uso terapéutico , Ramipril/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA