Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Adv Rheumatol ; 60: 52, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1130796

RESUMEN

Abstract Objective: Gout is characterized by inflammatory arthritis with hyperuricaemia and deposition of monosodium urate (MSU) crystals in the joints. Several animal models have been proposed based on MSU crystals injection or high-fat diet feeding; however, neither hyperuricaemia model nor acute gout model can effectively reflect clinical features of gout. This study aimed to assess the effectiveness of a compound gout model induced by the combination of MSU crystals injection and high-fat diet feeding. Methods: The compound gout model was induced by high-fat diet feeding per day and the intraplantar injection of MSU crystals (1 mg) into the footpad of each mouse every 10 days. Serum uric acid, foot swelling and pain analyses were performed at days 22, 32 and 42. Gout inflammation, serum proinflammatory cytokines and gut microbiota analyses were performed only at day 42. Results: Compared to hyperuricaemia model or acute gout model, the compound gout model showed little advantages of elevating serum uric acid, causing foot swelling and gout inflammation, while it caused more severe serum inflammation and gut microbiota dysbiosis. Severe serum inflammation in the compound gout model could be reflected by the increased levels of IL-1 α, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IFN-γ, KC, MCP-1 and MIP-1β. In addition, the compound gout model induced more alterations in the gut microbiota, including increasing levels of Desulfovibrio and Parasutterella. Conclusion: The injection of MSU and feed of high-fat diet have a combined effect on elevating serum inflammation and causing gut microbiota disorders in the process of establishing a gout model.(AU)


Asunto(s)
Animales , Ratones , Grasas de la Dieta/efectos adversos , Microbioma Gastrointestinal , Estruvita/efectos adversos , Gota/etiología , Modelos Animales
2.
Environmental Health and Preventive Medicine ; : 32-32, 2019.
Artículo en Inglés | WPRIM | ID: wpr-777609

RESUMEN

BACKGROUND@#Traditional toxicological studies focus on individual compounds. However, this single-compound approach neglects the fact that the mixture exposed to human may act additively or synergistically to induce greater toxicity than the single compounds exposure due to their similarities in the mode of action and targets. Mixture effects can occur even when all mixture components are present at levels that individually do not produce observable effects. So the individual chemical effect thresholds do not necessarily protect against combination effects, an understanding of the rules governing the interactive effects in mixtures is needed. The aim of the study was to test and analyze the individual and combined estrogenic effects of a mixture of three endocrine disrupting chemicals (EDCs), bisphenol A (BPA), nonylphenol (NP) and diethylstilbestrol (DES) in immature rats with mathematical models.@*METHOD@#In the present study, the data of individual estrogenic effects of BPA, NP and DES were obtained in uterotrophic bioassay respectively, the reference points for BPA, NP and DES were derived from the dose-response ralationship by using the traditional no observed adverse effect (NOAEL) or lowest observed adverse effect level (LOAEL) methods, and the benchmark dose (BMD) method. Then LOAEL values and the benchmark dose lower confidence limit (BMDL) of single EDCs as the dose design basis for the study of the combined action pattern. Mixed prediction models, the 3 × 2 factorial design model and the concentration addition (CA) model, were employed to analyze the combined estrogenic effect of the three EDCs.@*RESULTS@#From the dose-response relationship of estrogenic effects of BPA, NP and DES in the model of the prepuberty rats, the BMDL(NOAEL) of the estrogenic effects of BPA, NP and DES were 90(120) mg/kg body weight, 6 mg/kg body weight and 0.10(0.25) μg/kg body weight, and the LOAEL of the the estrogenic effects of three EDCs were 240 mg/kg body weight, 15 mg/kg body weight and 0.50 μg/kg body weight, respectively. At BMDL doses based on the CA concept and the factorial analysis, the mode of combined effects of the three EDCs were dose addition. Mixtures in LOAEL doses, NP and DES combined effects on rat uterine/body weight ratio indicates antagonistic based on the CA concept but additive based on the factorial analysis. Combined effects of other mixtures are all additive by using the two models.@*CONCLUSION@#Our results showed that CA model provide more accurate results than the factorial analysis, the mode of combined effects of the three EDCs were dose addition, except mixtures in LOAEL doses, NP and DES combined effects indicates antagonistic effects based on the CA model but additive based on the factorial analysis. In particular, BPA and NP produced combination effects that are larger than the effect of each mixture component applied separately at BMDL doses, which show that additivity is important in the assessment of chemicals with estrogenic effects. The use of BMDL as point of departure in risk assessment may lead to underestimation of risk, and a more balanced approach should be considered in risk assessment.


Asunto(s)
Animales , Ratas , Compuestos de Bencidrilo , Toxicidad , Dietilestilbestrol , Toxicidad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Disruptores Endocrinos , Toxicidad , Estrógenos , Toxicidad , Modelos Teóricos , Fenoles , Toxicidad , Ratas Sprague-Dawley , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA