Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Healthcare Informatics Research ; : 105-114, 2012.
Artículo en Inglés | WPRIM | ID: wpr-141277

RESUMEN

OBJECTIVES: Fuzzy cognitive maps (FCMs) representing causal knowledge of relationships between medical concepts have been used as prediction tools for clinical decision making. Activation functions used for inferences of FCMs are very important factors in helping physicians make correct decision. Therefore, in order to increase the visibility of inference results, we propose a method for designing certain types of activation functions by considering the characteristics of FCMs. METHODS: The activation functions, such as the sinusoidal-type function and linear function, are designed by calculating the domain range of the functions to be reached during the inference process of FCMs. Moreover, the designed activation functions were applied to the decision making process with the inference of an FCM model representing the causal knowledge of pulmonary infections. RESULTS: Even though sinusoidal-type functions oscillate and linear functions monotonously increase within the entire range of the domain, the designed activation functions make the inference stable because the proposed method notices where the function is used in the inference. And, the designed functions provide more visible numeric results than do other functions. CONCLUSIONS: Comparing inference results derived using activation functions designed with the proposed method and results derived using activation functions designed with the existing method, we confirmed that the proposed method could be more appropriately used for designing activation functions for the inference process of an FCM for clinical decision making.


Asunto(s)
Inteligencia Artificial , Toma de Decisiones
2.
Healthcare Informatics Research ; : 105-114, 2012.
Artículo en Inglés | WPRIM | ID: wpr-141276

RESUMEN

OBJECTIVES: Fuzzy cognitive maps (FCMs) representing causal knowledge of relationships between medical concepts have been used as prediction tools for clinical decision making. Activation functions used for inferences of FCMs are very important factors in helping physicians make correct decision. Therefore, in order to increase the visibility of inference results, we propose a method for designing certain types of activation functions by considering the characteristics of FCMs. METHODS: The activation functions, such as the sinusoidal-type function and linear function, are designed by calculating the domain range of the functions to be reached during the inference process of FCMs. Moreover, the designed activation functions were applied to the decision making process with the inference of an FCM model representing the causal knowledge of pulmonary infections. RESULTS: Even though sinusoidal-type functions oscillate and linear functions monotonously increase within the entire range of the domain, the designed activation functions make the inference stable because the proposed method notices where the function is used in the inference. And, the designed functions provide more visible numeric results than do other functions. CONCLUSIONS: Comparing inference results derived using activation functions designed with the proposed method and results derived using activation functions designed with the existing method, we confirmed that the proposed method could be more appropriately used for designing activation functions for the inference process of an FCM for clinical decision making.


Asunto(s)
Inteligencia Artificial , Toma de Decisiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA