Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Neuroscience Bulletin ; (6): 545-553, 2020.
Artículo en Inglés | WPRIM | ID: wpr-826999

RESUMEN

Monitoring neuronal activity in vivo is critical to understanding the physiological or pathological functions of the brain. Two-photon Ca imaging in vivo using a cranial window and specific neuronal labeling enables real-time, in situ, and long-term imaging of the living brain. Here, we constructed a recombinant rabies virus containing the Ca indicator GCaMP6s along with the fluorescent protein DsRed2 as a baseline reference to ensure GCaMP6s signal reliability. This functional tracer was applied to retrogradely label specific V1-thalamus circuits and detect spontaneous Ca activity in the dendrites of V1 corticothalamic neurons by in vivo two-photon Ca imaging. Notably, we were able to record single-spine spontaneous Ca activity in specific circuits. Distinct spontaneous Ca dynamics in dendrites of V1 corticothalamic neurons were found for different V1-thalamus circuits. Our method can be applied to monitor Ca dynamics in specific input circuits in vivo, and contribute to functional studies of defined neural circuits and the dissection of functional circuit connections.

2.
Protein & Cell ; (12): 909-929, 2018.
Artículo en Inglés | WPRIM | ID: wpr-758007

RESUMEN

70%-80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.


Asunto(s)
Animales , Humanos , Cuerpos Geniculados , Metabolismo , Corteza Visual , Metabolismo , Vías Visuales , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA