Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Chinese Pharmacological Bulletin ; (12): 125-132, 2024.
Artículo en Chino | WPRIM | ID: wpr-1013614

RESUMEN

Aim To prepare tripterygium glycoside nanoparticles and probe into their therapeutic effect on collagen-induced arthritis ( CIA) rats. Methods Tripterygium glycosides polyglycoside nanoparticles were prepared by thin film dispersion method and their quality was assessed. The CIA model was established and drug intervention performed. The body weight, toe swelling degree and arthritis index were measured. The pathological changes of the organs, knee and ankle synovium were observed. The serum levels of kidney function and inflammatory cytokine expression were detected in rats. Results The prepared tripterygium wil-fordii polyglycoside nanoparticles were round particles with uniform distribution and stable properties under electron microscope. Compared with the model group, the swelling of the left and right toes of medication group significantly decreased (P < 0. 01), and the ar-thritis index markedly decreased ( P < 0. 01). Among them, the efficacy of the TG-NPs group was better than that of the TG group. Compared with the normal group, the indexes of heart, spleen, kidney and testis all significantly decreased (P <0. 05, P<0.01). TG-NPs group had a significantly reduced pathological ankle-joint injury in knee cartilage and increased apoptotic synovial cells. Compared with the model group, the serum levels of ALT and BUN and CRE in TG-NPs group were significantly lower (P < 0. 05 ), and IL-1β, TNF-α and IL-6 levels decreased significantly (P <0. 05). Conclusions TG-NPs have good therapeutic effect on CIA through induction of synovial cell apoptosis and decrease of the expression of inflammatory cytokines. By intravenous injection of blood circula-tion, slow and controlled release of drugs can be achieved, the first pass effect caused by oral drug can be avoided, the viscera toxicity can be reduced, which provides an experimental basis for the development of new nanoagents for the treatment of rheumatoid arthritis.

2.
International Eye Science ; (12): 403-410, 2024.
Artículo en Chino | WPRIM | ID: wpr-1011391

RESUMEN

Diseases of ocular fundus are the leading causes of severe vision impairment or even blindness in patients worldwide, and the medical treatments are seriously limited by the difficulty of therapeutic drugs entering the fundus due to the various physiological barriers. Nano-drug delivery systems, with their nanoscale size and large surface area, can be loaded with therapeutic drugs of different physicochemical properties and modified with various surface active substances, which can not only improve the solubility and penetration of the drugs, but also protect biologic drugs from degradation and improve the biological safety and bioavailability, as well as deliver therapeutic drugs to specific ocular targets. All of these make the therapeutic potential enormous. Currently, more and more studies have been carried out to take advantage of nanomaterials for the treatment of different fundus diseases, including neurodegenerative diseases, fundus neovascularization, endophthalmitis and fundus tumors. This review analyzes the challenges and barriers faced by different routes of drug administration in the treatment of fundus diseases, the physicochemical properties of common nano-drug delivery systems that have been studied in related fields, and further summarizes the progress, advantages, limitations, and future directions of the application of various nano-drug delivery systems for the treatment of ocular fundus diseases in recent years.

3.
Acta Pharmaceutica Sinica B ; (6): 602-622, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1011272

RESUMEN

Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 186-196, 2024.
Artículo en Chino | WPRIM | ID: wpr-1006284

RESUMEN

Chinese materia medica has a wide range of clinical applications, but it has many active ingredients with different physicochemical properties, and the target organs, action pathways and mechanisms for different ingredients to exert their efficacy are not the same. Therefore, it is difficult to design and develop a co-delivery system loading multiple components of Chinese materia medica to maximize the synergistic therapeutic efficiency. Based on the characteristics of effectiveness and functionality of active ingredients, the strategies for multi-component co-delivery of Chinese materia medica can be categorized into two types:firstly, based on the effectiveness of active ingredients, new carriers such as liposomes, nanoparticles can be constructed to load multi-components of Chinese materia medica. secondly, based on the functionality of some active ingredients of Chinese materia medica, they are employed in the construction of co-delivery system, which can give play to the dual characteristics of their own efficacy and preparation functions. In this paper, we summarized the relevant research progress of the above two types of multi-component co-delivery strategies, and mainly discussed the pharmaceutical functions of the active ingredients in co-delivery systems, in order to find a more suitable multi-component co-delivery strategy, promoting the design and development of new delivery systems of Chinese materia medica.

5.
International Eye Science ; (12): 236-240, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005387

RESUMEN

Uveitis, a complex ocular disorder with numerous etiologies, can result from infection, autoimmune, and various physicochemical and mechanical injury factors. The treatment of this disease is difficult, and failure to receive timely and effective treatment can often lead to blindness. With the deepening of people's understanding of uveitis and its related mechanisms, various new sustained-release drug delivery systems for uveitis have been studied. However, due to the existence of various anatomical and physiological barriers in the eye, there are multiple obstacles to the sustained release treatment of uveitis. In this paper, the main research results in this field in recent years are reviewed, and the innovations and limitations of various new sustained-release drug delivery systems are discussed in order to provide new ideas for the sustained-release drug delivery treatment of uveitis in the future. These new sustained-release drug delivery systems will help to completely change the traditional treatment mode of uveitis with side effects and poor compliance in the future, bringing longer targeted sustained release and less toxic reactions.

6.
São José dos Campos; s.n; 2024. 110 p. ilus.
Tesis en Portugués | LILACS, BBO | ID: biblio-1551121

RESUMEN

Este estudo avaliou a eficácia in vitro e in vivo de mantas de nanofibras (NF) de policaprolactona (PCL) incorporadas com nistatina (NIS) no tratamento da estomatite protética (EP) em modelos animais. NF foram sintetizadas com diferentes concentrações de NIS, totalizando quatro soluções: PCL puro, PCL/NIS 0,045 g, PCL/NIS 0,090 g e PCL/NIS 0,225 g. A liberação da NIS foi analisada por espectroscopia Ultravioleta-Visível. A capacidade das mantas de inibirem o biofilme de Candida albicans, principal fator etiológico da EP, dividindo-se cinco grupos (N=5) compostos por um grupo com controle de células de C. albicans e com PCL puro, além das três concentrações de NIS. A seguir, foi analisada a viabilidade celular em queratinócitos humanos (HaCat) por meio do teste colorimétrico de resazurina. Cinco grupos foram divididos (N=10): controle celular, PCL puro e as três concentrações de NIS. Em modelos animais de ratos Wistar albinos (N=18), dispositivos palatinos (DP) de resina acrílica foram confeccionados simulando próteses totais e utilizados para a indução da EP. Para isso, DP contaminados com C. albicans foram cimentados na região molar da cavidade bucal dos animais e permaneceram em boca por 48 h. Após esse período, os DP foram removidos e os animais foram divididos em três grupos: (C) controle; (B1) com tratamento por mantas de PCL/NIS 0,045 g e (B2) PCL/NIS 0,225 g, com N=6. Então novos DP, livres de contaminação, foram cimentados na cavidade oral dos animais e permaneceu por mais 48 h. Após esse período, os animais foram eutanasiados, a contagem de UFC/ mL foi realizada e os palatos foram coletados para a análise histológica. A curva padrão de NIS obtida apresentou R2 de 0,99. As três concentrações de NF apresentaram liberação de NIS, com pico no tempo de 6 h e valores de 66,26 µg/ mL para PCL/NIS 0,045 g, de 333,87 µg/ mL para PCL/NIS 0,090 g e 436,51 µg/ mL para PCL/NIS 0,225 g, constantes até o fim do experimento. Os grupos com NIS reduziram em 2,5 log10 de crescimento do biofilme fúngico em relação aos grupos sem tratamento, Controle e PCL, sem diferença estatística significativa. Não foi observada citotoxicidade nas células HaCat, com viabilidade celular de 93,7% para PCL/NIS 0,045 g, 72,6% para PCL/NIS 0,090 g e 72,4% para PCL/NIS 0,225 g. A indução da EP nos três grupos foi possível e, porém, sem redução significativa na contagem de UFC/ mL de C. albicans nos grupos B1 e B2. Na análise histológica do grupo C pôde-se observar infiltração de hifas de Candida na camada queratinizada, presença de células inflamatórias formando micro abscessos e um discreto infiltrado inflamatório no tecido conjuntivo subjacente ao epitélio infectado. Nos grupos B1 e B2 não foram encontradas alterações epiteliais, concluindo-se que as NF demonstraram atividade antifúngica in vitro e foram efetivas na prevenção da penetração de hifas no tecido palatino de animais com DP (AU)


This study evaluated the in vitro and in vivo efficacy of nanofiber (NF) mats of polycaprolactone (PCL) incorporated with nystatin (NIS) in the treatment of denture stomatitis (DS) in animal models. NFs were synthesized with different concentrations of NIS, totaling four solutions: pure PCL, PCL/NIS 0.045 g, PCL/NIS 0.090 g, and PCL/NIS 0.225 g. The release of NIS was analyzed by Ultraviolet-Visible spectroscopy. The ability of the mats to inhibit Candida albicans biofilm, the main etiological factor of DS, was assessed by dividing five groups (N=5) composed of a group with C. albicans cell control and with pure PCL, in addition to the three concentrations of NIS. Next, cell viability in human keratinocytes (HaCat) was analyzed using the resazurin colorimetric test. Five groups were divided (N=10): cell control, pure PCL, and the three concentrations of NIS. In albino Wistar rat animal models (N=18), palatal devices (PD) made of acrylic resin were fabricated to simulate total prostheses and used to induce DS. For this, PD contaminated with C. albicans were cemented in the molar region of the animals' oral cavity and remained in the mouth for 48 hours. After this period, the PDs were removed, and the animals were divided into three groups: (C) control; (B1) treated with PCL/NIS 0.045 g mats, and (B2) PCL/NIS 0.225 g, with N=6. Then new, uncontaminated PDs were cemented in the animals' oral cavity and remained for another 48 hours. After this period, the animals were euthanized, UFC/ mL counts were performed, and the palates were collected for histological analysis. The standard NIS curve obtained showed an R2 of 0.99. The three concentrations of NF showed NIS release, with a peak at 6 h and values of 66.26 µg/ mL for PCL/NIS 0.045 g, 333.87 µg/ mL for PCL/NIS 0.090 g, and 436.51 µg/ mL for PCL/NIS 0.225 g, remaining constant until the end of the experiment. The groups with NIS reduced fungal biofilm growth by 2.5 log10 compared to the untreated groups, Control and PCL, with no significant statistical difference. No cytotoxicity was observed in HaCat cells, with cell viability of 93.7% for PCL/NIS 0.045 g, 72.6% for PCL/NIS 0.090 g, and 72.4% for PCL/NIS 0.225 g. Induction of DS in the three groups was possible; however, there was no significant reduction in UFC/ mL counts of C. albicans in groups B1 and B2. Histological analysis of group C revealed infiltration of Candida hyphae in the keratinized layer, presence of inflammatory cells forming micro abscesses, and a discreet inflammatory infiltrate in the connective tissue underlying the infected epithelium. No epithelial alterations were found in groups B1 and B2, concluding that NFs demonstrated in vitro antifungal activity and were effective in preventing hyphal penetration into palatal tissue in animals with PD.(AU)


Asunto(s)
Estomatitis Subprotética , Candida albicans , Nistatina
7.
Rev. mex. ing. bioméd ; 44(2): 1359, May.-Aug. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1536656

RESUMEN

ABSTRACT Hydrogels are gaining widespread popularity in the biomedical field due to their extraordinary properties, such as biocompatibility, biodegradability, zero toxicity, easy processing, and similarity to physiological tissue. They have applications in controlled drug release, wound dressing, tissue engineering, and regenerative medicine. Among these applications, hydrogels as a controlled drug delivery system stands out, which releases active substances in precise amounts and at specific times. To explore the latest advances in the design of hydrogels, a literature review of articles published in indexed scientific journals, in Scopus and Science Direct, was carried out. This review aimed to discover and describe the most innovative hydrogel research with applications in the biomedical field; hydrogels synthesized with polymers of different origins were selected, such as; i. Natural (dextran, agarose, chitosan, etc.); ii. Synthetic (polyacrylamide, polyethylene glycol, polyvinyl alcohol, etc.); iii. Composites (interpenetrants, hybrid crosslinkers, nanocomposites, etc.). Comparative analysis revealed that hydrogels with composite materials show the most promise. These composite hydrogels combine the advantages of different polymers or incorporate additional components, offering enhanced properties and functionalities. In summary, hydrogels are versatile biomaterials with immense potential in biomedicine. Their unique properties make them suitable for diverse applications. However, innovative designs and formulations must continue to be explored to further advance the capabilities of hydrogels and expand their biomedical applications.


RESUMEN Los hidrogeles están ganando una extensa popularidad en el campo biomédico gracias a que presentan propiedades extraordinarias como biocompatibilidad, biodegradabilidad, nula toxicidad, fácil procesamiento, y similitud con el tejido fisiológico. tienen aplicaciones en la liberación controlada de fármacos, el vendaje de heridas, la ingeniería de tejidos y la medicina regenerativa. Entre estas aplicaciones, destaca el uso de hidrogeles como sistema de administración controlada de fármacos, que liberan sustancias activas en cantidades precisas y en momentos concretos. Para explorar los últimos avances en el diseño de hidrogeles, se realizó una revisión bibliográfica de artículos publicados en revistas científicas indexadas, en Scopus y Science Direct. El objetivo de esta revisión fue descubrir y describir las investigaciones de hidrogeles más innovadoras con aplicaciones en el campo biomédico, se seleccionaron hidrogeles sintetizados con polímeros de diferente índole como; i. Naturales (dextrano, agarosa, quitosano, etc.); ii. Sintéticos (poliacrilamida, polietilenglicol, alcohol polivinílico, etc); iii. Compuestos (interpenetrantes, reticulantes híbridos, nanocompuestos, etc.). El análisis comparativo reveló que los hidrogeles que utilizan materiales compuestos son los más prometedores. Estos hidrogeles compuestos combinan las ventajas de distintos polímeros o incorporan componentes adicionales, ofreciendo propiedades y funcionalidades mejoradas. En resumen, los hidrogeles son biomateriales versátiles con un inmenso potencial en biomedicina. Sus propiedades únicas los hacen adecuados para diversas aplicaciones, sin embargo, se debe seguir explorando diseños y formulaciones innovadores para seguir avanzando en las capacidades de los hidrogeles y ampliar sus aplicaciones biomédicas.

8.
Indian J Ophthalmol ; 2023 Jan; 71(1): 297-299
Artículo | IMSEAR | ID: sea-224807

RESUMEN

With the advancement in the study of keratoconjunctivitis sicca and the scope of its treatment, punctal plugs are being widely used for the therapeutic management of dry eye disease. With the emergence of 3D printing in medicine, 3D printing of punctal plugs that have an inbuilt drug delivery system and also that can be personalized from patient to patient according to their punctum size can be a great therapeutic option. Another benefit of the device is that its printing takes a short period of time and is cost-effective. This study aimed at making an open source design and 3D printing an efficient model of a punctal plug with an inbuilt drug delivery system that can be eventually used for the treatment of various ocular diseases that require frequent drug instillation or blockage of the nasolacrimal pathway. The 3D design for the punctal plug was made using the open source application, FreeCAD, and slicing was done using the application ChituBox. After that, the plugs were printed using the LCD printer Crealty LD-002R. The material used was resin that was compatible with the Crealty LD-002R. Punctal plugs with satisfactory results were printed using the LCD printer. The punctal plugs showed suitable structure and were also easily reproduced in the 3D printer without any complications or setbacks.

9.
Journal of Zhejiang University. Medical sciences ; (6): 439-450, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1009906

RESUMEN

Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.


Asunto(s)
ARN Mensajero/genética , Citoplasma , Nanopartículas , Medicina de Precisión
10.
Journal of Zhejiang University. Medical sciences ; (6): 417-428, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1009904

RESUMEN

Nucleic acid-based drugs, such as RNA and DNA drugs, exert their effects at the genetic level. Currently, widely utilized nucleic acid-based drugs include nucleic acid aptamers, antisense oligonucleotides, mRNA, miRNA, siRNA and saRNA. However, these drugs frequently encounter challenges during clinical application, such as poor stability, weak targeting specificity, and difficulties in traversing physiological barriers. By employing chemical modifications of nucleic acid structures, it is possible to enhance the stability and targeting specificity of certain nucleic acid drugs within the body, thereby improving delivery efficiency and reducing immunogenicity. Moreover, utilizing nucleic acid drug carriers can facilitate the transportation of drugs to lesion sites, thereby aiding efficient intracellular escape and promoting drug efficacy within the body. Currently, commonly employed delivery carriers include virus vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers and extracellular vesicles. Nevertheless, individual modifications or delivery carriers alone are insufficient to overcome numerous obstacles. The integration of nucleic acid chemical modifications with drug delivery systems holds promise for achieving enhanced therapeutic effects. However, this approach also presents increased technical complexity and clinical translation costs. Therefore, the development of nucleic acid drug carriers and nucleic acid chemical modifications that are both practical and simple, while maintaining high efficacy, low toxicity, and precise nucleic acid delivery, has become a prominent research focus in the field of nucleic acid drug development. This review comprehensively summarizes the advancements in nucleic acid-based drug modifica-tions and delivery systems. Additionally, strategies to enhance nucleic acid drug delivery efficiency are discussed, with the aim of providing valuable insights for the translational application of nucleic acid drugs.


Asunto(s)
Ácidos Nucleicos , ARN Interferente Pequeño/genética , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Desarrollo de Medicamentos
11.
China Journal of Chinese Materia Medica ; (24): 4874-4883, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008657

RESUMEN

Rheumatoid arthritis(RA) is a widely prevalent autoimmune inflammatory disease that severely affects patients' quality of life. Currently, conventional formulations against RA have several limitations, such as nonspecificity, poor efficacy, large drug dosages, frequent administration, and systemic side effects. Nanotechnology-based drug delivery systems have emerged as a promising stra-tegy for the diagnosis and treatment of RA since nanotechnology can overcome the limitations of traditional treatments and simplify the complexity of the disease. These systems enable targeted delivery of anti-inflammatory drugs to the inflamed areas through active and passive targeting, achieving specificity to the joints, overcoming the need for increased dosage and administration frequency, and reducing associated adverse reactions. This article aimed to review nanocarrier-based drug delivery systems in the field of RA and elucidate how nanosystems can be utilized to deliver therapeutic drugs to inflamed joints for controlling RA progression. By discussing the current issues and challenges faced by nanodrug delivery systems and highlighting the urgent need for solutions, this article offers theoretical support for further research on nanotechnology-based co-delivery systems in the future.


Asunto(s)
Humanos , Calidad de Vida , Sistemas de Liberación de Medicamentos , Artritis Reumatoide/tratamiento farmacológico , Enfermedades Autoinmunes/tratamiento farmacológico , Nanotecnología
12.
Chinese Journal of Experimental Ophthalmology ; (12): 612-616, 2023.
Artículo en Chino | WPRIM | ID: wpr-990890

RESUMEN

Neovascularization is the hallmark of many fundus diseases, including diabetic retinopathy, retinal vein occlusion and neovascular age-related macular degeneration.More and more evidence suggests that vascular endothelial growth factor (VEGF) plays a critical role in neovascularization.Anti-VEGF drugs are the first-line treatment for neovascular fundus diseases and have achieved significant results.However, there are drawbacks such as short drug half-lives and the need for long-term administration to maintain effective concentrations, which increases the economic burden and medical risk for patients and reduces compliance.Therefore, finding a new method for intraocular drug delivery is of great clinical importance.Based on the principle that diabetes patients use insulin pumps to gradually release drugs, the ocular anti-VEGF drug delivery system can continuously release anti-VEGF drugs over a period of time, significantly reducing the injection frequency and improving patient compliance.At present, the research on ocular anti-VEGF drug delivery systems is still immature, and various systems are in different stages of clinical trials.According to different design principles, they can be divided into three categories with their characteristics, micropump (extraocular storage delivery systems), biodegradable implants, and non-biodegradable implants.This article summarized and analyzed the controlled ocular anti-VEGF drug release delivery systems currently in clinical trials.

13.
Acta Pharmaceutica Sinica B ; (6): 2844-2876, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982893

RESUMEN

Non-invasive control of the drug molecules accessibility is a key issue in improving diagnostic and therapeutic procedures. Some studies have explored the spatiotemporal control by light as a peripheral stimulus. Phototriggered drug delivery systems (PTDDSs) have received interest in the past decade among biological researchers due to their capability the control drug release. To this end, a wide range of phototrigger molecular structures participated in the DDSs to serve additional efficiency and a high-conversion release of active fragments under light irradiation. Up to now, several categories of PTDDSs have been extended to upgrade the performance of controlled delivery of therapeutic agents based on well-known phototrigger molecular structures like o-nitrobenzyl, coumarinyl, anthracenyl, quinolinyl, o-hydroxycinnamate and hydroxyphenacyl, where either of one endows an exclusive feature and distinct mechanistic approach. This review conveys the design, photochemical properties and essential mechanism of the most important phototriggered structures for the release of single and dual (similar or different) active molecules that have the ability to quickly reason of the large variety of dynamic biological phenomena for biomedical applications like photo-regulated drug release, synergistic outcomes, real-time monitoring, and biocompatibility potential.

14.
Acta Pharmaceutica Sinica ; (12): 2300-2310, 2023.
Artículo en Chino | WPRIM | ID: wpr-999147

RESUMEN

Brain delivery of drugs remains challenging due to the presence of the blood-brain barrier (BBB). With advances in nanotechnology and biotechnology, new possibilities for brain-targeted drug delivery have emerged. Biomimetic nano drug delivery systems with high brain-targeting and BBB-penetrating capabilities, along with good biocompatibility and safety, can enable 'invisible' drug delivery. In this review, five different types of biomimetic strategies are presented and their research progress in central nervous system disorders is reviewed. Finally, the challenges and future prospects for biomimetic nano drug delivery systems in intracerebral drug delivery are summarized.

15.
Acta Pharmaceutica Sinica B ; (6): 5121-5134, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011222

RESUMEN

Extracellular vesicles (EVs) have recently received much attention about the application of drug carriers due to their desirable properties such as nano-size, biocompatibility, and high stability. Herein, we demonstrate orange-derived extracellular vesicles (OEV) nanodrugs (DN@OEV) by modifying cRGD-targeted doxorubicin (DOX) nanoparticles (DN) onto the surface of OEV, enabling significantly enhancing tumor accumulation and penetration, thereby efficiently inhibiting the growth of ovarian cancer. The obtained DN@OEV enabled to inducement of greater transcytosis capability in ovarian cancer cells, which presented the average above 10-fold transcytosis effect compared with individual DN. It was found that DN@OEV could trigger receptor-mediated endocytosis to promote early endosome/recycling endosomes pathway for exocytosis and simultaneously reduce degradation in the early endosomes-late endosomes-lysosome pathway, thereby inducing the enhanced transcytosis. In particular, the zombie mouse model bearing orthotopic ovarian cancer further validated DN@OEV presented high accumulation and penetration in tumor tissue by the transcytosis process. Our study indicated the strategy in enhancing transcytosis has significant implications for improving the therapeutic efficacy of the drug delivery system.

16.
Acta Pharmaceutica Sinica B ; (6): 3277-3299, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011131

RESUMEN

In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.

17.
Journal of Pharmaceutical Practice ; (6): 212-217, 2023.
Artículo en Chino | WPRIM | ID: wpr-972314

RESUMEN

Iontophoresis is a non-invasive physical permeation technology, which has been widely applied in transdermal and transmucosal administration. Compared with other permeation technologies, iontophoresis have the advantages of high efficacy, high patient compliance and controllable delivery dose. With the development of microneedles and nano-carrier technology, the combination of iontophoresis and other penetration promotion technologies has gradually become a research hotspot. The penetration mechanism and influencing factors of iontophoresis, and the study on the combination of iontophoresis with hydrogel, microneedles or nano-carrier were reviewed in this paper.

18.
Acta Pharmaceutica Sinica B ; (6): 1014-1027, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971747

RESUMEN

Intelligent drug delivery is a promising strategy for cancer therapies. In recent years, with the rapid development of synthetic biology, some properties of bacteria, such as gene operability, excellent tumor colonization ability, and host-independent structure, make them ideal intelligent drug carriers and have attracted extensive attention. By implanting condition-responsive elements or gene circuits into bacteria, they can synthesize or release drugs by sensing stimuli. Therefore, compared with traditional drug delivery, the usage of bacteria for drug loading has better targeting ability and controllability, and can cope with the complex delivery environment of the body to achieve the intelligent delivery of drugs. This review mainly introduces the development of bacterial-based drug delivery carriers, including mechanisms of bacterial targeting to tumor colonization, gene deletions or mutations, environment-responsive elements, and gene circuits. Meanwhile, we summarize the challenges and prospects faced by bacteria in clinical research, and hope to provide ideas for clinical translation.

19.
Acta Pharmaceutica Sinica B ; (6): 359-371, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971709

RESUMEN

Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC. Inherited from the activated platelet, the hybrid liposomes still retain the native affinity toward CTCs. Further, the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo. The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions, and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug. Overall, this work provides a promising prospect for the comprehensive treatment of BM-TNBC, which could be generalized to other cell types or used in imaging platforms in the future.

20.
Chinese Journal of Blood Transfusion ; (12): 1068-1073, 2023.
Artículo en Chino | WPRIM | ID: wpr-1004705

RESUMEN

Platelets play an important role in physiological and pathological activities such as thrombosis, inflammation and tumorigenesis. At present, the application of platelets in drug delivery systems is increasingly studied. Compared with traditional drug delivery systems, new drug delivery systems based on platelets and their derivatives can effectively improve the circulation time and selective accumulation, and reduce the occurrence of related immune reactions or off-target toxic and side effects. In this paper, the types and applications of platelet and its derivatives drug delivery systems were summarized in order to provide reference for platelet-related drug delivery research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA