Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Biomedical Engineering ; (6): 676-682, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008887

RESUMEN

This paper studies the active force characteristics of the neck muscles under the condition of rapid braking, which can provide theoretical support for reducing the neck injury of pilots when carrier-based aircraft blocks the landing. We carried out static loading and real vehicle braking experiments under rapid braking conditions, collected the active contraction force and electromyography (EMG) signals of neck muscles, and analyzed the response characteristics of neck muscle active force response. The results showed that the head and neck forward tilt time was delayed and the amplitude decreased during neck muscle pre-tightening. The duration of the neck in the extreme position decreased, and the recovery towards the seat direction was faster. The EMG signals of trapezius muscle was higher than sternocleidomastoid muscle. This suggests that pilots can reduce neck injury by pre-tightening the neck muscles during actual braking flight. In addition, we can consider the design of relevant fittings for pre-tightening the neck muscles.


Asunto(s)
Músculos del Cuello , Cuello , Electromiografía , Cabeza
2.
Journal of Biomedical Engineering ; (6): 654-662, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008885

RESUMEN

Aiming at the human-computer interaction problem during the movement of the rehabilitation exoskeleton robot, this paper proposes an adaptive human-computer interaction control method based on real-time monitoring of human muscle state. Considering the efficiency of patient health monitoring and rehabilitation training, a new fatigue assessment algorithm was proposed. The method fully combined the human neuromuscular model, and used the relationship between the model parameter changes and the muscle state to achieve the classification of muscle fatigue state on the premise of ensuring the accuracy of the fatigue trend. In order to ensure the safety of human-computer interaction, a variable impedance control algorithm with this algorithm as the supervision link was proposed. On the basis of not adding redundant sensors, the evaluation algorithm was used as the perceptual decision-making link of the control system to monitor the muscle state in real time and carry out the robot control of fault-tolerant mechanism decision-making, so as to achieve the purpose of improving wearing comfort and improving the efficiency of rehabilitation training. Experiments show that the proposed human-computer interaction control method is effective and universal, and has broad application prospects.


Asunto(s)
Humanos , Dispositivo Exoesqueleto , Fatiga Muscular , Músculos , Algoritmos , Impedancia Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA