Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Inglés | WPRIM | ID: wpr-714998

RESUMEN

The optimal cell culture method of autologous oral mucosal epithelial cell sheet is not well established for a safe transplantation on to the patients' ocular surface. Animal serum and 3T3 mouse feeder cells are currently being used to stimulate the growth of the epithelial cells. However, the use of animal compounds can have potential side effects for the patient after transplantation of the engineered cell sheet. In the present study, we focused on engineering a rabbit oral mucosal epithelial cell sheet without 3T3 mouse feeder cells using a mix of Dulbecco's Modified Eagle Medium/Bronchial Epithelial Cell Growth Medium culture media (DMEM/BEGM). Autologous oral mucosal epithelial cell sheets, engineered with DMEM/BEGM feeder cell free culture media, were compared to those cultured in presence of serum and feeder cells. Using a DMEM/BEGM mix culture media, feeder cell free culture condition, autologous oral mucosal epithelial cells reached confluence and formed a multilayered sheet. The phenotype of engineered cell sheets cultured with DMEM/BEGM were characterized and compared to those cultured with serum and feeder. Hematoxylin and eosin staining showed the formation of a similar stratified multilayer cell sheets, in both culture conditions. The expression of deltaN-p63, ABCG2, PCNA, E-cadherin, Beta-catenin, CK3, CK4, CK13, Muc5AC, was similar in both culture conditions. We demonstrated that rabbit autologous oral mucosal epithelial cell sheet can be engineered, in feeder cell free conditions. The use of the DMEM/BEGM culture media to engineer culture autologous oral mucosa epithelial cell sheet will help to identify key factors involved in the growth and differentiation of oral mucosal epithelial cells.


Asunto(s)
Animales , Humanos , Ratones , beta Catenina , Cadherinas , Técnicas de Cultivo de Célula , Medios de Cultivo , Águilas , Eosina Amarillenta-(YS) , Células Epiteliales , Células Nutrientes , Hematoxilina , Métodos , Mucosa Bucal , Fenotipo , Antígeno Nuclear de Célula en Proliferación
2.
Blood Research ; : 154-161, 2014.
Artículo en Inglés | WPRIM | ID: wpr-145982

RESUMEN

BACKGROUND: Natural killer (NK) cells constantly survey surrounding tissues and remove newly generated cancer cells, independent of cancer antigen recognition. Although there have been a number of attempts to apply NK cells for cancer therapy, clinical application has been somewhat limited because of the difficulty in preparing a sufficient number of NK cells. Therefore, ex vivo NK cell expansion is one of the important steps for developing NK cell therapeutics. METHODS: CD3+ depleted lymphocytes were cocultured with IL-2 and with feeder cells (peripheral blood mononuclear cells [PBMCs], K562, and Jurkat) for 15 days. Expanded NK cells were tested for cytotoxicity against cancer cell lines. RESULTS: We compared feeder activities of three different cells-PBMC, K562, and Jurkat. K562 expanded NK cells by almost 20 fold and also showed powerful cytotoxic activity against cancer cells. K562-NK cells remarkably expressed the NK cell activation receptors, NKG2D, and DNAM-1. K562-NK cells exhibited more than two-fold production of cytotoxic granules compared with Jurkat-NK cells, producing more perforin and granzyme B than naive NK cells. CONCLUSION: Our findings suggest that K562 are more efficient feeder cells than Jurkat or PBMCs. K562 feeder cells expanded NK cells by almost 20 fold and showed powerful cytotoxic activity against cancer cells. We herein propose an intriguing approach for a design of NK cell expansion.


Asunto(s)
Humanos , Línea Celular , Células Nutrientes , Granzimas , Interleucina-2 , Células Asesinas Naturales , Leucemia Mieloide , Linfocitos , Perforina
3.
Artículo en Chino | WPRIM | ID: wpr-635964

RESUMEN

Background When limbal stem cell deficiency (LSCD) occurs,not only the limbal stem cells (LSCs) were damaged,but also the LSCs matrix microenvironment was under destruction.The treatment of LSCD include both replenishing of stem cells and restoration of microenvironment.So far,the method to improve the microenvironment of LSCD still exist limitation and urgently need to establish more appropriate microenvironment for the LSCs growth in vitro.Objective This study was to investigate whether the human bone marrow-derived mesenchymal stem cells (BMSCs) can be used as the ideal cells to repair limbal microenvironment and its possible mechanism of repairing limbal microenvironment during the human LSCs amplification in vitro as feeder cells.Methods BMSCs were cultured and passaged in vitro,and flow cytometry was used to assay the expressions of CD45,CD71,CD90,CD105 and HLA-DR and directionally induced BMSCs to the osteoblasts and adipocytes.BMSCs were treated using mitomycin C (MMC) to use as the feeder cells.LSCs were separately co-cultured with BMSCs,Swiss-3T3 feeder cells and free-feeder cells,and colony-forming efficiency (CFE) of the LSCs was compared among different co-cultured groups.LSCs were then cultured sequentially and identified by flow cytometry.Expression of cytokines in BMSCs was confirmed by reverse transcriptional polymerase chain reaction (RT-PCR).Results Cultured BMSCs showed a good homogeneity,with a lot of expressions of interstitial cell markers such as CD71,CD90,CD105 and less expressions of hematopoietic cell markers including CD45 and HLA-DR.After separately cocultured with feeder cells for 12 days,the CFE of the LSCs co-cultured with BMSCs,Swiss-3T3 and no feeder cells was 3.67% ±0.58%,4.30% ± 1.54% and 0.20% ±0.10%,showing a statistical significant difference among the three groups(F =15.420,P =0.040).There was no statistically significant difference in the C FE of the LSCs between the BMSCs feeder group and the Swiss-3T3 feeder cells group(P =0.456),between the BMSCs feeder group and the free-feeder cells group or the Swiss-3T3 co-culture group and the free-feeder cells group (P =0.005,0.002).LSCs presented with a positive response for ABCG2 antigen in the co-cultured with BMSCs group.Basic fibroblast growth factor(bFGF),stem cell factor (SCF) and N-cadherin(N-cad) were positively expressed in the BMSCs as feeder cells.Conclusions Human BMSCs-derived feeder cells can improve the growth of the stromal microenvironment of the LSCs and enhance their proliferation ability.Human BMSCs are suitable for engineering of epithelial sheets.

4.
Artículo en Coreano | WPRIM | ID: wpr-60747

RESUMEN

OBJECTIVES: This study was carried out to establish human embryonic stem cells derived from frozen-thawed embryos using mouse embryonic fibroblasts (mEFs), human fetal skin and muscle fibroblasts as feeder cells, and to identify the characteristic of embryonic stem cells. METHODS: When primary mEFs, human fetal skin and muscle fibroblasts were prepared, passaging on 4 days from replating could have effective trypsinization and clear feeder layers. Eight of 23 frozenthawed 4~8 cell stage embryos donated from consenting couples developed to blastocysts. Inner cell mass (ICM) was isolated by immunosurgery. ICM was co-cultured on mEFs, human fetal skin or muscle fibroblasts. The ICM colonies grown on mEFs, human fetal skin or muscle fibroblasts were tested the expression of stage specific embryonic antigen-3, -4 (SSEA-3, -4), octamer binding transcription factor-4 mRNA (Oct-4) and alkaline phosphatase surface marker. RESULTS: We obtained 1 ICM colony from 2 ICM co-cultured on mEFs as feeder cells and did not obtain any ICM colony from 6 ICM clumps co-cultured on human fetal skin or muscle fibroblasts. The colony formed on mEFs could be passaged 30 times every 5 days with sustaining undifferentiated colony appearance. When the colonies cultured on mEFs were grown on human fetal skin or muscle fibroblasts, the colonies could be passaged 15 times every 9 days with sustaining undifferentiated colony appearance. The colonies grown on mEFs and human fetal fibroblasts expressed SSEA-4 and alkaline phosphatase surface markers and positive for the expression of Oct-4 by reverse transcription-polymerase chain reaction (RT-PCR). The produced embryoid body differentiated spontaneously to neural progenitorlike cells, neuron-like cells and beating cardiomyocyte-like cells, and frozen-thawed embryonic stem cells displayed normal 46, XX karyotype. CONCLUSIONS: The human embryonic stem cells can be established by using mEFs and human fetal fibroblasts produced in laboratory as feeder cells.


Asunto(s)
Animales , Humanos , Ratones , Fosfatasa Alcalina , Blastocisto , Cuerpos Embrioides , Células Madre Embrionarias , Estructuras Embrionarias , Composición Familiar , Células Nutrientes , Fibroblastos , Cariotipo , ARN Mensajero , Piel , Tripsina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA