Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros








Asunto principal
Intervalo de año
1.
Braz. j. biol ; 81(3): 584-591, July-Sept. 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1153386

RESUMEN

Abstract The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.


Resumo A raposa-voadora (Pteropus giganteus), também conhecida como morcego indiano, pertence à ordem dos Chiroptera e à família Pteropodidae. A presente pesquisa dá ênfase ao código de barras de DNA de P. giganteus em Azad Jammu e Caxemira. Sequências genéticas dos morcegos foram amplificadas, e os produtos de PCR foram sequenciados e examinados por software de bioinformática. De espécies congenérica e coespecífica, foram estimados composição nucleotídica e desvio de nucleotídeos K2P, diversidade de haplótipos e número de haplótipos. A análise mostrou que todas as cinco amostras estudadas de P. giganteus apresentaram baixos teores de G (19,8%) em comparação com C (27,8%), A (25,1%) e T (27,3%). A diversidade de haplótipos calculada foi de 0,60%, e a distância média intraespecífica de K2P foi de 0,001%, com um elevado número de substituições transicionais. O estudo sugeriu que P. giganteus (R = 0,00) não se desviou da evolução neutra. É possível concluir que o gene mtDNA é um marcador favorável para identificação de espécies de morcegos do que genes nucleares por causa de suas características distintivas e pode servir como um marco para a identificação de espécies interconectadas em nível molecular e para a determinação genética de populações.


Asunto(s)
Animales , Quirópteros/genética , Pakistán , Haplotipos/genética , ADN Mitocondrial , Código de Barras del ADN Taxonómico
2.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467449

RESUMEN

Abstract The flying fox (Pteropus giganteus) also familiar with the name of the greater Indian fruit Bat belongs to the order Chiroptera and family Pteropodidae. Current research emphasis on the DNA barcoding of P. giganteus in Azad Jammu Kashmir. Bat sequences were amplified and PCR products were sequenced and examined by bioinformatics software. Congeneric and conspecific, nucleotide composition and K2P nucleotide deviation, haplotype diversity and the number of haplotypes were estimated. The analysis showed that all of the five studied samples of P. giganteus had low G contents (G 19.8%) than C (27.8%), A (25.1%) and T (27.3%) contents. The calculated haplotype diversity was 0.60% and the mean intraspecific K2P distance was 0.001% having a high number of transitional substitutions. The study suggested that P. giganteus (R=0.00) do not deviate from the neutral evolution. It was determined from the conclusion that this mtDNA gene is a better marker for identification of Bat species than nuclear genes due to its distinctive characteristics and may serve as a landmark for the identification of interconnected species at the molecular level and in the determination of population genetics.


Resumo A raposa-voadora (Pteropus giganteus), também conhecida como morcego indiano, pertence à ordem dos Chiroptera e à família Pteropodidae. A presente pesquisa dá ênfase ao código de barras de DNA de P. giganteus em Azad Jammu e Caxemira. Sequências genéticas dos morcegos foram amplificadas, e os produtos de PCR foram sequenciados e examinados por software de bioinformática. De espécies congenérica e coespecífica, foram estimados composição nucleotídica e desvio de nucleotídeos K2P, diversidade de haplótipos e número de haplótipos. A análise mostrou que todas as cinco amostras estudadas de P. giganteus apresentaram baixos teores de G (19,8%) em comparação com C (27,8%), A (25,1%) e T (27,3%). A diversidade de haplótipos calculada foi de 0,60%, e a distância média intraespecífica de K2P foi de 0,001%, com um elevado número de substituições transicionais. O estudo sugeriu que P. giganteus (R = 0,00) não se desviou da evolução neutra. É possível concluir que o gene mtDNA é um marcador favorável para identificação de espécies de morcegos do que genes nucleares por causa de suas características distintivas e pode servir como um marco para a identificação de espécies interconectadas em nível molecular e para a determinação genética de populações.

3.
Artículo en Inglés | IMSEAR | ID: sea-136751

RESUMEN

Objective: The purpose of this study was to elucidate the renal microvasculature of Lylei’s flying fox. Methods: The kidneys of twelve adult Lylei’s flying foxes of both sexes were processed by using vascular corrosion cast technique combined with SEM. Results: It was found that arcuate arteries at the corticomedullary junctions give off several interlobular arteries, which run perpendicularly into the renal cortex. The interlobular artery branches into two sets of vessels. Firstly, aglomerular arteriole divides into capsular and peritubular capillary plexus without forming glomeruli. Secondly, an afferent arteriole, a branch of the interlobular artery, breaks into the glomerular capillary plexus that gathers to form a single efferent arteriole. An efferent arteriole gives rise to a peritubular capillary plexus and vasa recta. A peritubular capillary forms a plexus among renal tubules. Vasa recta are straight vessels that run parallel to Henle’s loops and collecting ducts in the outer medulla. In addition, vasa recta form U- shaped loops in the inner medulla. Moreover, the fenestrated type of capillaries is observed. It was found that high numbers of the fenestration were seen in the glomerular capillary plexus and venous limbs of vasa recta in the outer medulla. In contrast, fewer knobs were presented in the loops of vasa recta in the inner medulla and peritubular capillary plexus. Both peritubular capillary plexus and vasa recta collect the blood into interlobular and arcuate veins. Conclusion: In this investigation, the aglomerular arteriole might be an important shunting of the blood, while this animal alters the position immediately. With the advantages of this technique, fenestrated capillaries are demonstrated which are related to the functions of each tubule. Moreover, the microvascular patterns of the kidney in this animal are similar to that in human. Therefore, it is a suitable model for renal microvascular investigation.

4.
Artículo en Inglés | IMSEAR | ID: sea-136934

RESUMEN

Objective: The purpose of this study was to elucidate the microvasculature of the adrenal glands in the Lylei’s flying fox. Methods: The adrenal glands of the Lylei’s flying foxes were processed in the histological technique and vascular corrosion cast technique combined with the SEM. Results: Upon reaching the gland, the adrenal arteries divided into the cortical and medullary arteries. Firstly, the cortical arteries gave off subcapsular and true cortical capillary plexuses. Few loop cortical arteries were observed. At the corticomedullary junction, true cortical capillary plexus formed two groups, large peripheral venous radicles and sinusoidal medullary capillary plexus. Secondly, the medullary arteries supplied the inner cortex and medulla as true medullary capillary plexus. Therefore, the medullary capillary plexus composed of branches from cortical and medullary arteries. The medullary capillary plexus became a tributary of deep venous radicle. Both peripheral and deep venous radicles drained into the collecting, central, and adrenal veins, respectively. Furthermore, some medullary capillary plexus directly drained into the central vein without gathering into the collecting veins. Conclusions: Not only the microvascular connections in the cortex and medulla, but also several channels of the venous drainage were found in the glands of this animal model. Especially, the direct connections between the medullary capillary plexus and the central vein have not been demonstrated in other animal models. These direct routes may supply the sufficient blood to this organ, when the animal suddenly alters the positions. These findings also support the internal control of the cortex over the medulla. In addition, the pattern of adrenal microvascularization in this animal is similar to that in human. So that, this mammal is a suitable model for microvascular investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA