Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Psychiatry Investigation ; : 161-168, 2011.
Artículo en Inglés | WPRIM | ID: wpr-35972

RESUMEN

OBJECTIVE: To analyze both differentially expressed genes and the Bcl-xL protein expression after acute and chronic treatment with fluoxetine in rat C6 glioma cells. METHODS: C6 glioma cells were cultured for 24 h or 72 h after treatment with 10 microM fluoxetine, and gene expression patterns were observed using microarray and qRT-PCR. Then, cells were cultured for 6 h, 24 h, 72 h or 96 h after treatment with 10 microM fluoxetine, and the expression of Bcl-xL protein was measured using western blot. RESULTS: As determined by microarray, treatment with fluoxetine for 24 h up-regulated 33 genes (including Bcl-xL and NCAM140) and down-regulated 7 genes (including cyclin G-associated kinase). Treatment with fluoxetine for 72 h up-regulated 53 genes (including Gsalpha and Bcl-xL) and down-regulated 77 genes (including Galphai2 and annexin V). Based on the qRT-PCR results, there was an increase in Gsalpha mRNA and a decrease in Galphai2 mRNA at 72 h in fluoxetine-treated cells as compared to control, a result that was consistent with microarray. We also observed an increase in Bcl-xL mRNA (both at 24 h and at 72 h) in fluoxetine-treated cells as compared to control, demonstrating a tendency to increase gradually. Bcl-xL protein expression increased as the duration of fluoxetine treatment increased. CONCLUSION: These results suggest that chronic treatment with fluoxetine not only initiates the cAMP pathway through inducing Gsalpha expression but also induces Bcl-xL expression, thus inhibiting apoptosis.


Asunto(s)
Animales , Ratas , Apoptosis , Proteína bcl-X , Ciclinas , Fluoxetina , Expresión Génica , Glioma , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA